Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Helicity Structure of the Nucleon from Lepton Nucleon Scattering

Similar presentations


Presentation on theme: "The Helicity Structure of the Nucleon from Lepton Nucleon Scattering"— Presentation transcript:

1 The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
E.C. Aschenauer

2 The contemporary experiments
Beam: ≤6 GeV e-; 85% polarization Target: polarized targets 3He, 6LiD, NH3 Beam: 27.5 GeV e±; <50>% polarization Target: (un)-polarized gas targets; <85%> polarization Beam: 160 GeV m; 75% polarization Target: 6LiD; % polarization E.C. Aschenauer

3 News on the spin structure of the nucleon
Naïve parton model BUT 1989 EMC measured S = Spin Puzzle Unpolarised structure fct. Gluons are important ! Sea quarks Dqs DG Full description of Jq and Jg needs orbital angular momentum E.C. Aschenauer

4 Deep Inelastic Scattering
FF Important kinematic variables: q DF cross section: Spin 1 E.C. Aschenauer

5 How to measure Quark Polarizations
Virtual photon g* can only couple to quarks of opposite helicity Select q+(x) or q-(x) by changing the orientation of target nucleon spin or helicity of incident lepton beam Asymmetry definition: inclusive DIS: only e’ info used semi-inclusive DIS: e’+h info used E.C. Aschenauer

6 World data on inclusive DIS
Combine p and d to get n: or 3He What can we learn on the PDFs Compass: hep-ex/ Hermes: hep-ex/ E.C. Aschenauer

7 HERMES: Integrals Saturation in deuteron integral is assumed
use only deuterium from hyperon beta decay (a8=0.586±0.031) From neutron beta decay a3=1.269±0.003 Q2=5 GeV2, NNLO in MS scheme E.C. Aschenauer

8 Compass: QCD-fit Input parameterizations: E.C. Aschenauer

9 JLAB: High x behaviour extract PDFs using world A1p Hall-A: CLAS:
A1n from 3He extract PDFs using world A1p CLAS: Proton Deuterium E.C. Aschenauer

10 Polarised quark distributions
Correlation between detected hadron and struck qf “Flavor – Separation” Inclusive DIS: Semi-inclusive DIS: In LO-QCD: MC Extract Dq by solving: E.C. Aschenauer

11 Polarized Quark Densities
First complete separation of pol. PDFs without assumption on sea polarization Du(x) > 0 Dd(x) < 0 Polarised opposite to proton spin Polarised parallel to proton spin good agreement with NLO-QCD Du(x), Dd(x) ~ 0 No indication for Ds(x) < 0 In measured range (0.023 – 0.6) E.C. Aschenauer

12 Results for DQ and DS Inclusive Asymmetry Kaon Asymmetry
Need a longitudinal polarized deuterium target strange quark sea in proton and neutron identical fragmentation simplifies All needed information can be extracted from HERMES data alone inclusive A1,d(x,Q2)and kaon AK1,d (x,Q2) double spin asym. Kaon multiplicities Only assumptions used: isospin symmetry between proton and neutron charge-conjugation invariance in fragmentation Fit x-dependence of multiplicities using PDFs from CTEQ-6 This Work Kretzer KKP 0.41± 1.41± E.C. Aschenauer

13 Results for DQ and DS Earlier HERMES conclusions of
unpolarized strange sea confirmed factor 2 smaller error bars Errors very sensitive to FF input E.C. Aschenauer

14 NLO FIT to DIS & SIDIS Data
D. De Florian et al. hep-ph/ Q2=10 GeV2 Kretzer KKP c2DIS c2SIDIS Duv Du Ddv Dd Ds Dg DS 206 225 231 0.94 0.70 -0.26 -0.34 0.087 -0.049 -0.11 -0.055 -0.045 -0.051 0.57 0.68 0.31 0.28 SIDIS data improves description of all Dq, especially light sea Kretzer FF favor SU(3) symmetric sea, not so for KKP DS ~30% in all cases E.C. Aschenauer

15 Unpolarized Gluon Distribution
big Q2-x lever arm very accurate G(x) E.C. Aschenauer

16 How to measure DG fixed target experiments small Q2-x lever arm
even sign of DG unknown Indirect from scaling violation hep-ph/ E.C. Aschenauer

17 The golden channels Idea: Direct measurement of DG
Isolate the photon gluon fusion process (PGF) Open Charm production Reaction: LO-MC: Aroma E.C. Aschenauer

18 The golden channels Idea: Direct measurement of DG --- h±h± h±
Isolate the photon gluon fusion process detection of hadronic final states with high pT high pT pairs of hadrons single high pT hadrons COMPASS HERMES h±h± --- less sub-processes contributing  more sub-processes contributing  higher statistics  h±h± vs. h±: h± more inclusive → pQCD NLO calculations (easier) possible E.C. Aschenauer

19 COMPASS Results Channel: h±h± with Q2>1GeV2 Cuts: LO-MC: LEPTO
Considered sub-processes: LO-MC: LEPTO 10% of stat. Q2>1GeV2 0.33±0.07 Dg/g=0.06±0.31(stat.)±0.06(syst.) m2=2.3GeV2 E.C. Aschenauer

20 COMPASS Results Channel: h±h± with Q2<1GeV2 Cuts: LO-MC: PYTHIA 6.2
Considered sub-processes: LO-MC: PYTHIA 6.2 COMPASS standard values: hep-ph/ used for Dg/g extraction Dg/g=0.016±0.058(stat.)±0.055(syst.) m2=3.0GeV2 E.C. Aschenauer

21 HERMES Results Channels: h± with Q2<0.1GeV2; pT>1GeV
h±h± with Q2<0.1GeV2; h± with Q2>0.1GeV2; PT>1GeV h± with Q2<0.1GeV2; pT>1GeV Considered sub-processes: LO-MC: PYTHIA 6.2 E.C. Aschenauer

22 HERMES Results kT, pT standard values: Minimize the difference between
HERMES cross section: kT, pT standard values: M.Anselmino et al. Phys. Rev. D71,074006 Minimize the difference between by fitting a function for Dg/g Dg/g results for different final states hep-ph/ E.C. Aschenauer

23 Summary talk by H. Avakian E.C. Aschenauer

24 BACKUP SLIDES E.C. Aschenauer

25 Measured Asymmetries Deuterium Proton statistics sufficient for
5 parameter fit E.C. Aschenauer

26 Purities E.C. Aschenauer

27 Kaon Multiplicities E.C. Aschenauer

28 AAC low x-extrpolation
E.C. Aschenauer

29 E.C. Aschenauer

30 E.C. Aschenauer

31 DG/G = 0.41±0.18±0.03 at x=0.17±0.11 and m2=2.1GeV2 Old analysis:
pairs of high pT hadrons pTh1>1.5GeV and pTh2>0.8GeV MC used Pythia-5 only polarized proton data no determination of systematic uncertainty due to MC-model E.C. Aschenauer


Download ppt "The Helicity Structure of the Nucleon from Lepton Nucleon Scattering"

Similar presentations


Ads by Google