Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trigonometry – Tangent – Angles – Demonstration

Similar presentations


Presentation on theme: "Trigonometry – Tangent – Angles – Demonstration"— Presentation transcript:

1 Trigonometry – Tangent – Angles – Demonstration
This resource provides animated demonstrations of the mathematical method. Check animations and delete slides not needed for your class.

2 θ Hypotenuse Opposite Adjacent A right-angled triangle has 4 parts.
θ = Theta is either angle. Hypotenuse Opposite θ Adjacent Hypotenuse – always opposite the right-angle & always longest. Opposite – always opposite θ. Adjacent – next to θ.

3 TOA 𝑥 (O) 12 cm 9 cm (A) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 12 9
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (O) We want to find Tan θ. (so cover Tan θ) 12 cm 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 12 9 𝑥 𝑇𝑎𝑛 − 𝑥= =53.13° 9 cm (A)

4 TOA 𝑥 (O) (A) 9 cm 7 cm 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 9 7
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (O) (A) 9 cm 7 cm We want to find Tan θ. (so cover Tan θ) 𝑥 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 9 7 𝑇𝑎𝑛 − 𝑥= =52.13°

5 TOA 𝑥 5 cm 9 cm (O) (A) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 5 9
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A 𝑥 We want to find Tan θ. (so cover Tan θ) 5 cm 9 cm 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 5 9 (O) (A) 𝑇𝑎𝑛 − 𝑥= =29.05°

6 TOA 𝑥 5 cm (O) (A) 8 cm 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 5 8
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A 5 cm (O) (A) We want to find Tan θ. (so cover Tan θ) 8 cm 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 5 8 𝑥 𝑇𝑎𝑛 − 𝑥= =32.01°

7 TOA 𝑥 (O) 12 cm 5 cm (A) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 12 5
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (O) 12 cm We want to find Tan θ. (so cover Tan θ) 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 12 5 𝑥 5 cm (A) 𝑇𝑎𝑛 − 𝑥= =67.38°

8 TOA 𝑥 (O) 4 cm 8 cm (A) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 4 8
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (O) 4 cm We want to find Tan θ. (so cover Tan θ) 𝑥 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 4 8 8 cm (A) 𝑇𝑎𝑛 − 𝑥= =26.57°

9 TOA 𝑥 (A) 10 cm 11 cm (O) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 11 10
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (A) 10 cm 𝑥 We want to find Tan θ. (so cover Tan θ) 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 11 10 11 cm (O) 𝑇𝑎𝑛 − 𝑥= =47.73°

10 TOA 𝑥 (A) 13 cm 8 cm (O) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 8 13
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A 𝑥 (A) We want to find Tan θ. (so cover Tan θ) 13 cm 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 8 13 𝑇𝑎𝑛 − 𝑥= =31.61° 8 cm (O)

11 TOA 𝑥 (A) 11 cm 20 cm (O) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 20 11
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A (A) 11 cm 𝑥 We want to find Tan θ. (so cover Tan θ) 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 20 11 20 cm (O) 𝑇𝑎𝑛 − 𝑥= =61.19°

12 TOA 𝑥 14 cm (O) 3 cm (A) 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 14 3
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Find the value of 𝑥 to 2dp. O Tan θ A We want to find Tan θ. (so cover Tan θ) 14 cm 𝑇𝑎𝑛 θ= 𝑂 𝐴 𝑇𝑎𝑛 𝑥= 14 3 𝑥 (O) 𝑇𝑎𝑛 − 3 cm 𝑥= =77.91° (A)

13 TOA 𝑥 𝑥 𝑥 7 cm 12 cm 5 cm 3 cm 4 cm 5 cm 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O A
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Calculate 𝑥 for these three triangles. (2dp) O Tan θ A 7 cm 𝑥 12 cm 𝑥 5 cm 3 cm 4 cm 𝑥 5 cm

14 TOA 𝑥 𝑥 𝑥 7 cm 12 cm 5 cm 3 cm 4 cm 5 cm 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 O 𝑥=54.46° A
Label the sides. Write the formula. Substitute & calculate. 𝑇𝑎𝑛 θ= 𝑂𝑝𝑝 𝐴𝑑𝑗 Calculate 𝑥 for these three triangles. (2dp) O Tan θ A 𝑥=54.46° 7 cm 𝑥 12 cm 𝑥 5 cm 𝑥=30.96° 3 cm 4 cm 𝑥 𝑥=18.43° 5 cm

15

16

17 tom@goteachmaths.co.uk Questions? Comments? Suggestions?
…or have you found a mistake!? Any feedback would be appreciated . Please feel free to


Download ppt "Trigonometry – Tangent – Angles – Demonstration"

Similar presentations


Ads by Google