Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fig. 4 Analysis of complex formation and signaling capacity of wild-type and mutant proteins. Analysis of complex formation and signaling capacity of wild-type.

Similar presentations


Presentation on theme: "Fig. 4 Analysis of complex formation and signaling capacity of wild-type and mutant proteins. Analysis of complex formation and signaling capacity of wild-type."— Presentation transcript:

1 Fig. 4 Analysis of complex formation and signaling capacity of wild-type and mutant proteins.
Analysis of complex formation and signaling capacity of wild-type and mutant proteins. (A) The mutated residues in interfaces 2 and 3 shown on the cryo-EM structure as viewed from the membrane. Modeled parts of the structure are shown as cartoon: NRTN (orange), GFRα2 (blue), and RETCLD1-4 (pink/magenta). Mutated residues are shown as spheres. The gray spheres represent the unmodeled RETCRD. (B) SEC-MALS ultraviolet (UV) traces after incubation of the NRTN-GFRα2 complex with RETECD (excess NRTN-GFRα2) show that a large peak, corresponding to the extracellular portion of the signaling complex, is formed with wild-type NRTN (yellow) as well as the NRTN mutants Y119A (red) and E135S/R139S (blue). Labeled peaks elute at the same retention volume as the complex components when run separately under the same conditions. An additional peak in the red trace (Y119A) represents RETECD that is not in complex. Incubation with the GFRα2 mutant N330 (gray) resulted in two major peaks, one corresponding to the elution volume of RETECD and one with a molecular weight lower than the hexameric complex. (C) SDS-PAGE gel showing samples from chemical cross-linking of heterohexameric complex with wild-type NRTN, Y119A, E135S/R139S, and GFRα2 N330A. Peptide mapping confirmed the identity of the SDS-PAGE gel bands. A larger band (marked with an asterisk), corresponding to approximately twice the size of the NRTN-GFRα2-RET complex, was shown by peptide mapping to also contain NRTN, GFRα2, and RETECD. This putative dimer was, however, not observed on SEC-MALS and is most likely a gel or cross-linking artifact. (D) The NRTN-induced activation of mitogen-activated protein kinase (MAPK) signaling through RET measured in a human neuroblastoma (TGW) cell–based activity reporter assay. The average of three separate experiments is reported, and each experiment was run with four replicates. The top concentration of NRTN resulted in a reduced signal, which is commonly observed in luminescence assays, and has therefore been excluded from calculation of EC50 and maximal signal. EC50 values are listed in Table 1. RLU, relative luminometer units. Janna M. Bigalke et al. Sci Adv 2019;5:eaau4202 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).


Download ppt "Fig. 4 Analysis of complex formation and signaling capacity of wild-type and mutant proteins. Analysis of complex formation and signaling capacity of wild-type."

Similar presentations


Ads by Google