Download presentation
Presentation is loading. Please wait.
1
(Photonics and Semiconductor Electronics)
光電與半導體電子 (Photonics and Semiconductor Electronics) 薛文証 教授 工程科學及海洋工程學系
2
Research Topics Photonics: Semiconductor Electronics:
Liquid Crystal Display (LCD) Solar Cells Light Emitting Diode (LED) Metamaterials Near-Field Optics (Nano Optics) Photonic Crystals Semiconductor Junctions High Electron Mobility Transistor (HEMT) Heterojunction Bipolar Transistor (HBT) Nano Electronics Group III-V Semiconductor Devices Chapter Introduction
3
LCD TV Chapter Introduction
4
TFT LCD Display Chapter Introduction
5
LCD Display Chapter Introduction
6
Photovoltaic Cells (Solar Cells)
Chapter 5.4 Magnetic sensors
7
Photovoltaic Cells (Solar Cells)
a. Encapsulate b. Contact Grid c. The Antireflective Coating (AR Coating) d. N-Type Silicon e. P-Type Silicon f. Back Contact Chapter 5.4 Magnetic sensors
8
Application of LEDs Traffic/ Railway/ Marine/ Airport Runway Signaling
Automotive Exterior/ Stop-Tail-Turn Signage/ Corporate Identity Portable Lighting/ Flashlights Landscape Lighting/ Bollards Architectural Detail/ Column/ Wall Wash LCD Back Lighting/ Edge-Lit Signs Chapter Introduction Source : Lumileds
9
Evolution of LEDs Chapter Introduction Source: OSRAM
10
White LEDs Efficiency 220 Lumin/Watt ?? Source: OSRAM
Chapter Introduction Source: OSRAM
11
Structure of White LEDs
GaAs (Eg1.42 eV) is an absorbing sub. to the AlGaInP(Eg1.88 to 2.3 eV) LED structure. GaAs with poor thermal conductivity (44 W/mK) An increase in luminous efficiency can be achieved by the DBR method, but the DBR only reflects light of near-normal incidence. GaP window layer will limit the light extraction due to with high refraction index (n~3.3>>1 or epoxy 1.4~1.5) GaAs substrate 1 DBR Active Window 3 2 Chapter Introduction
12
Chapter Introduction
13
Chapter Introduction
14
Development of Microelectronics
1948 The first transistor was invented. 1952 Shockly proposed field-effect transistor (FET). 1958 Integrated circuits (ICs) were developed. Chapter Introduction
15
The resultant increase in the number of
IC technology has developed rapidly during the past 45 years. The resultant decrease in the size of silicon processing device. (minimum: <100 nm) The resultant increase in the number of transistors contained within a single IC. (maximum: >1G) Chapter Introduction
16
ENIAC computer in 1947 Fig. 1.1.1-1 (Van der Spiegel G2,p17 )
Chapter Introduction
17
Miniaturized ENIAC computer ( produced in 1997)
Chapter Introduction Fig (Van der Spiegel et al.1998 G2,p18 )
18
Moore’s law for integrated circuits
Double per 1.5 years Fig (T1,p2) Chapter Introduction
19
Size reduction for DRAM
Fig (Campbell 1996 T1,p2) Chapter Introduction
20
Nanoelectronics Scaling
Chapter Introduction
21
Microoptical application (2/4)
c. Waveguide principle 1.The indices of refraction of the surface layer and the substrate are different. 2.The light is guided along the fiber due to the total reflection within the glass interface 3.The layer structure SiO2/SiON/SiO2 can be used as a sensor element. Fig Waveguide in an optical microchip Chapter Overview
22
Mach-Zehnder interferometer(1/2)
1. system consisting a. SiON waveguides b. Silicon membrane c. Photodiobes d. CMOS amplifier 2. chip size : 0.3mm x 5mm 3. membranes : 200µm x 200µm Fig Mach-Zehnder interferometer. According to [Fisch91] (G1 p_220) Chapter Pressure sensors
23
Application of the Immuno sensors
Principle: 1.The sensor detects the concentration of the antigens directly with an interferometric method 2.The light intensity changes are here due to the bonding process Fig Immuno-sensing using an optical transducer (G1-P252) Chapter 5.7 Biological sensors
24
The various materials used to cover the UV to IR range
Fig some common semiconducting materials used in radiation microsensors and their dynamic range within the UV-to –IR spectrum (T1 p_243) Chapter 5.3 Radiation sensors
25
Photograph of photoconductive sensors
CdS photoconductive sensor. ( Relatively large active area of 12mm and slow response time.) Fig example of radiation microsensors (T1 p_246) Chapter 5.3 Radiation sensors
26
Layout of a Hall effect magnetic microsensor (1/3)
Fig Schematic layout of a Hall effect magnetic microsensor fabricated in (a) a bipolar IC process and (b) an nMOS IC process (T1 p.273) The layout of a substrate Hall plate sensor made from a bipolar process and a CMOS process. Chapter 5.4 Magnetic sensors
27
Fig. 1.2.2-1 Contaminant analyzer using an optical principle
(Schomburg 1993 G1,p36) Chapter environmental and biotechnology
28
Microspectrometer Fig. 1.2.2-2 (Schomburg 1993 G1,p36)
Chapter environmental and biotechnology
29
The Langmuir-Blodgett (LB) Film
Fig microsensor using polymers (g2.p266) Ferro, pyro, and piezoelectric polymer thin films Coating materials with controllable optical properties Microsensors (Chemical and Biomedical) 2.3 Ceramic, polymeric, and composite materials
30
END Fig (Gardner 1994 T1,p4) Chapter 1.3 Markets for microsystems
31
GaN HEMT Chapter Introduction
32
Chapter Introduction
33
HEMT HEMT Chapter Introduction
34
Chapter Introduction
35
Chapter Introduction
36
Chapter Introduction
37
HEMT Chapter Introduction
38
HEMT Chapter Introduction
39
HEMT Chapter Introduction
40
Chapter Introduction
41
HBT Chapter Introduction
42
http://taiwan. cnet. com/digilife/0,2000089053,20125995-20001643c,00
Chapter Introduction
43
HBT Chapter Introduction
44
Chapter Introduction
45
Chapter Introduction
46
Single electron Transistor
Chapter Introduction
47
Single electron Transistor
Chapter Introduction
48
Single electron Transistor
Chapter Introduction
49
Chapter Introduction
50
Carbon nanotube Chapter Introduction
51
http://gb-www. digitimes. com. tw/gate/gb/tech. digitimes. com
Chapter Introduction
52
A semiconductor quantum well
Chapter Introduction
53
A semiconductor quantum well
Chapter Introduction
54
https://spie.org/x8796.xml?highlight=x2408
Chapter Introduction
55
Chapter Introduction
56
Chapter Introduction
57
Chapter Introduction
58
Chapter Introduction
59
Semiconductor LASERS Chapter Introduction
60
tunneling transistor Chapter Introduction
61
nano-techology Chapter Introduction
62
Quantum compuer Chapter Introduction
63
Quantum compuer Chapter Introduction
64
Quantum compuer Chapter Introduction
65
quantum dot http://www.primidi.com/2005/02/12.html
Chapter Introduction
66
Chapter Introduction
67
Chapter Introduction
68
Quantum Well Infrared photo detector
NASA Developing Infrared Camera For Use In Brain Surgery, Tumor Removal - Daisy Spangler Chapter Introduction
69
Chapter Introduction
70
Semiconductor laser Chapter Introduction
71
LASER http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/led.htm
Chapter Introduction
72
Group III-V Chapter Introduction
73
Group III-V Chapter Introduction
74
Chapter Introduction
75
Chapter Introduction
76
Chapter Introduction
77
Chapter Introduction
78
Chapter Introduction
79
Chapter Introduction
80
Chapter Introduction
81
Chapter Introduction
82
Chapter Introduction
83
Chapter Introduction
84
Chapter Introduction
85
Chapter Introduction
86
Chapter Introduction
87
Chapter Introduction
88
Chapter Introduction
89
Chapter Introduction
90
Chapter Introduction
91
Chapter Introduction
92
Chapter Introduction
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.