Presentation is loading. Please wait.

Presentation is loading. Please wait.

(Photonics and Semiconductor Electronics)

Similar presentations


Presentation on theme: "(Photonics and Semiconductor Electronics)"— Presentation transcript:

1 (Photonics and Semiconductor Electronics)
光電與半導體電子 (Photonics and Semiconductor Electronics) 薛文証 教授 工程科學及海洋工程學系

2 Research Topics Photonics: Semiconductor Electronics:
Liquid Crystal Display (LCD) Solar Cells Light Emitting Diode (LED) Metamaterials Near-Field Optics (Nano Optics) Photonic Crystals Semiconductor Junctions High Electron Mobility Transistor (HEMT) Heterojunction Bipolar Transistor (HBT) Nano Electronics Group III-V Semiconductor Devices Chapter Introduction

3 LCD TV Chapter Introduction

4 TFT LCD Display Chapter Introduction

5 LCD Display Chapter Introduction

6 Photovoltaic Cells (Solar Cells)
Chapter 5.4 Magnetic sensors

7 Photovoltaic Cells (Solar Cells)
a. Encapsulate b. Contact Grid c. The Antireflective Coating (AR Coating) d. N-Type Silicon e. P-Type Silicon f. Back Contact Chapter 5.4 Magnetic sensors

8 Application of LEDs Traffic/ Railway/ Marine/ Airport Runway Signaling
Automotive Exterior/ Stop-Tail-Turn Signage/ Corporate Identity Portable Lighting/ Flashlights Landscape Lighting/ Bollards Architectural Detail/ Column/ Wall Wash LCD Back Lighting/ Edge-Lit Signs Chapter Introduction Source : Lumileds

9 Evolution of LEDs Chapter Introduction Source: OSRAM

10 White LEDs Efficiency 220 Lumin/Watt ?? Source: OSRAM
Chapter Introduction Source: OSRAM

11 Structure of White LEDs
GaAs (Eg1.42 eV) is an absorbing sub. to the AlGaInP(Eg1.88 to 2.3 eV) LED structure. GaAs with poor thermal conductivity (44 W/mK) An increase in luminous efficiency can be achieved by the DBR method, but the DBR only reflects light of near-normal incidence. GaP window layer will limit the light extraction due to with high refraction index (n~3.3>>1 or epoxy 1.4~1.5) GaAs substrate 1 DBR Active Window 3 2 Chapter Introduction

12 Chapter Introduction

13 Chapter Introduction

14 Development of Microelectronics
1948 The first transistor was invented. 1952 Shockly proposed field-effect transistor (FET). 1958 Integrated circuits (ICs) were developed. Chapter Introduction

15 The resultant increase in the number of
IC technology has developed rapidly during the past 45 years. The resultant decrease in the size of silicon processing device. (minimum: <100 nm) The resultant increase in the number of transistors contained within a single IC. (maximum: >1G) Chapter Introduction

16 ENIAC computer in 1947 Fig. 1.1.1-1 (Van der Spiegel G2,p17 )
Chapter Introduction

17 Miniaturized ENIAC computer ( produced in 1997)
Chapter Introduction Fig (Van der Spiegel et al.1998 G2,p18 )

18 Moore’s law for integrated circuits
Double per 1.5 years Fig (T1,p2) Chapter Introduction

19 Size reduction for DRAM
Fig (Campbell 1996 T1,p2) Chapter Introduction

20 Nanoelectronics Scaling
Chapter Introduction

21 Microoptical application (2/4)
c. Waveguide principle 1.The indices of refraction of the surface layer and the substrate are different. 2.The light is guided along the fiber due to the total reflection within the glass interface 3.The layer structure SiO2/SiON/SiO2 can be used as a sensor element. Fig Waveguide in an optical microchip Chapter Overview

22 Mach-Zehnder interferometer(1/2)
1. system consisting a. SiON waveguides b. Silicon membrane c. Photodiobes d. CMOS amplifier 2. chip size : 0.3mm x 5mm 3. membranes : 200µm x 200µm Fig Mach-Zehnder interferometer. According to [Fisch91] (G1 p_220) Chapter Pressure sensors

23 Application of the Immuno sensors
Principle: 1.The sensor detects the concentration of the antigens directly with an interferometric method 2.The light intensity changes are here due to the bonding process Fig Immuno-sensing using an optical transducer (G1-P252) Chapter 5.7 Biological sensors

24 The various materials used to cover the UV to IR range
Fig some common semiconducting materials used in radiation microsensors and their dynamic range within the UV-to –IR spectrum (T1 p_243) Chapter 5.3 Radiation sensors

25 Photograph of photoconductive sensors
CdS photoconductive sensor. ( Relatively large active area of 12mm and slow response time.) Fig example of radiation microsensors (T1 p_246) Chapter 5.3 Radiation sensors

26 Layout of a Hall effect magnetic microsensor (1/3)
Fig Schematic layout of a Hall effect magnetic microsensor fabricated in (a) a bipolar IC process and (b) an nMOS IC process (T1 p.273) The layout of a substrate Hall plate sensor made from a bipolar process and a CMOS process. Chapter 5.4 Magnetic sensors

27 Fig. 1.2.2-1 Contaminant analyzer using an optical principle
(Schomburg 1993 G1,p36) Chapter environmental and biotechnology

28 Microspectrometer Fig. 1.2.2-2 (Schomburg 1993 G1,p36)
Chapter environmental and biotechnology

29 The Langmuir-Blodgett (LB) Film
Fig microsensor using polymers (g2.p266) Ferro, pyro, and piezoelectric polymer thin films Coating materials with controllable optical properties Microsensors (Chemical and Biomedical) 2.3 Ceramic, polymeric, and composite materials

30 END Fig (Gardner 1994 T1,p4) Chapter 1.3 Markets for microsystems

31 GaN HEMT Chapter Introduction

32 Chapter Introduction

33 HEMT HEMT Chapter Introduction

34 Chapter Introduction

35 Chapter Introduction

36 Chapter Introduction

37 HEMT Chapter Introduction

38 HEMT Chapter Introduction

39 HEMT Chapter Introduction

40 Chapter Introduction

41 HBT Chapter Introduction

42 http://taiwan. cnet. com/digilife/0,2000089053,20125995-20001643c,00
Chapter Introduction

43 HBT Chapter Introduction

44 Chapter Introduction

45 Chapter Introduction

46 Single electron Transistor
Chapter Introduction

47 Single electron Transistor
Chapter Introduction

48 Single electron Transistor
Chapter Introduction

49 Chapter Introduction

50 Carbon nanotube Chapter Introduction

51 http://gb-www. digitimes. com. tw/gate/gb/tech. digitimes. com
Chapter Introduction

52 A semiconductor quantum well
Chapter Introduction

53 A semiconductor quantum well
Chapter Introduction

54 https://spie.org/x8796.xml?highlight=x2408
Chapter Introduction

55 Chapter Introduction

56 Chapter Introduction

57 Chapter Introduction

58 Chapter Introduction

59 Semiconductor LASERS Chapter Introduction

60 tunneling transistor Chapter Introduction

61 nano-techology Chapter Introduction

62 Quantum compuer Chapter Introduction

63 Quantum compuer Chapter Introduction

64 Quantum compuer Chapter Introduction

65 quantum dot http://www.primidi.com/2005/02/12.html
Chapter Introduction

66 Chapter Introduction

67 Chapter Introduction

68 Quantum Well Infrared photo detector
NASA Developing Infrared Camera For Use In Brain Surgery, Tumor Removal - Daisy Spangler Chapter Introduction

69 Chapter Introduction

70 Semiconductor laser Chapter Introduction

71 LASER http://www.mtmi.vu.lt/pfk/funkc_dariniai/diod/led.htm
Chapter Introduction

72 Group III-V Chapter Introduction

73 Group III-V Chapter Introduction

74 Chapter Introduction

75 Chapter Introduction

76 Chapter Introduction

77 Chapter Introduction

78 Chapter Introduction

79 Chapter Introduction

80 Chapter Introduction

81 Chapter Introduction

82 Chapter Introduction

83 Chapter Introduction

84 Chapter Introduction

85 Chapter Introduction

86 Chapter Introduction

87 Chapter Introduction

88 Chapter Introduction

89 Chapter Introduction

90 Chapter Introduction

91 Chapter Introduction

92 Chapter Introduction


Download ppt "(Photonics and Semiconductor Electronics)"

Similar presentations


Ads by Google