Download presentation
Presentation is loading. Please wait.
1
Strong EWSB in Top Quark Production
Praha, Nov 3, 2005 Strong EWSB in Top Quark Production Ivan Melo M. Gintner, I. Melo, B. Trpišová (University of Žilina)
2
Outline ρtt → tttt + X Motivation for new vector (ρ) resonances:
Strong EW Symmetry Breaking (SEWSB) Vector resonance model ρ signal at LHC pp → ρtt → WWtt + X ρtt → tttt + X ρ signal at future e+e- colliders e+e- → ννtt e+e- → tt
3
EWSB: SU(2)L x U(1)Y → U(1)Q
Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor
4
Chiral SB in QCD EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV
SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV
5
WL WL → WL WL WL WL → t t t t → t t
L = i gπ Mρ /v (π- ∂μ π+ - π+ ∂μ π-) ρ0μ + gt t γμ t ρ0μ + gt t γμ γ5 t ρ0μ
6
International Linear Collider: e+e- at 1 TeV
ee ―› ρtt ―› WW tt ee ―› ρtt ―› tt tt ee ―› WW ee ―› tt ee ―› νν WW ee ―› νν tt Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―› WW tt pp ―› ρtt ―› tt tt pp ―› WW pp ―› tt pp ―› jj WW pp ―› jj tt
7
Chiral effective Lagrangian
SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model - a v2 /4 Tr[(ωμ + i gv ρμ . τ/2 )2] + Lmass LSM(W,Z) + b1 ψL i γμ (u+∂μ – u+ ρμ + u+ i g’/6 Yμ) u ψL + b2 ψR Pb i γμ (u ∂μ – u ρμ + u i g’/6 Yμ) u+ Pb ψR + λ1 ψL i γμ u+ Aμ γ5 u ψL + λ2 ψR Pλ i γμ u Aμ γ5 u+ Pλ ψR BESS Our model Standard Model with Higgs replaced with ρ gπ = Mρ /(2 v gv) gt = gv b2 /4 + … Mρ ≈ √a v gv /2 t
8
Unitarity constraints
Low energy constraints gv ≥ → gπ ≤ 0.2 Mρ (TeV) |b2 – λ2| ≤ → gt ≈ gv b2 / 4 |b1 – λ1| ≤ → b1 = 0 Unitarity constraints WL WL → WL WL , WL WL → t t, t t → t t gπ ≤ (Mρ= 700 GeV) gt ≤ (Mρ= 700 GeV)
9
Partial (Γ―›WW) and total width Γtot of ρ
10
Search at LHC: pp → W W t t + X
J. Leveque et al. ATL-PHYS : pp -> Htt -> WWtt MH =[ ] GeV ρ BRA: pp → ρtt →WWtt σ(WWtt) = σ(ρtt) x BR(ρ->WW) 2) Full calculation: pp → WWtt
11
pp → W W t t + X (full calculation)
39 diagrams in gg channel No resonance background ρ ρ ρ
12
CompHEP results: pp → W W t t + X
ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10 SM: MH = 700 GeV ΓH = 184 GeV MWW(GeV) MWW(GeV) σ(gg) = fb ―› fb σ(gg) = fb ―› fb No resonance background: σ(gg) = fb Cuts: Γρ < mWW < Γρ (GeV) pT > 100 GeV, |y| < 2
13
Total cross sections for ρtt and WWtt
BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)
14
|N(ρ) – N(no res.)| √(N(no res.)) R = ≈ S/√B > 5 BRA Full calc.
15
Search at LHC: tttt vs WWtt
BRA BRA
16
Search at Hadron Colliders: p+p(p) ―› t + t
Tevatron: p + p ―› t + t σS = 1.2 fb σB = fb LHC: p + p ―› t + t σS = fb σB = fb Mρ=700 GeV Γρ=12.5 GeV No cuts
18
Subset of fusion diagrams + approximations (Pythia)
Full calculation of 66 diagrams at tree level (CompHEP)
19
Pythia vs CompHEP Before cuts √s (GeV) 800 1000 1500
ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08) Before cuts √s (GeV) Pythia (fb) CompHEP (fb)
21
Backgrounds (Pythia) e+e- → e+e- tt e+e- → tt γ
σ(0.8 TeV) = fb → 0.13 fb (0.20 fb) σ(1.0 TeV) = fb → fb (0.16 fb)
24
e- e+ → t t ρ different from Higgs ! x+y=560 nm z=0.40 mm n=2x1010
ρ (M= 700 GeV, b2=0.08, g’’=20)
25
Conclusions New strong ρ-resonance model
pp → W W t t + X pp → t t t t + X at LHC R values up to a few 100 (before t,W decays and detector effects), L = 100 fb-1 Backgrounds pp → tt, W + jets, Z + jets, … ? e+e- → ννtt R ≤ 26 at CM energy = 1 TeV, L = 200 fb-1 e+e- → tt Lscan = 1 fb-1 Similar work on pp → t t t t + X : T.Han et al, hep-ph/
26
WWtt reconstruction WWtt →lν jj jjb jjb b tagging …… 50 %
l detection … % one trigger lepton pT > 30 (20) GeV e (μ) jets pT > 30 GeV kinematical cuts for 6 jets …….. ≈ 20 % BR: W → e(μ)ν … % … Pl W → hadrons …68 % …. Ph ε = εcutsεb2εl 4 Pl Ph = 1.2 %
27
Search at Hadron Colliders
Mρ=700 GeV, Γρ=12.5 GeV Tevatron: p + p ―› t + t σS = 1.2 fb σB = fb LHC: p + p ―› t + t σS = fb σB = fb
29
pp → ρ t t + X (8 diagrams in gg channel)
BRA: σ(WWtt) = σ(ρtt) x BR(ρ->WW)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.