Presentation is loading. Please wait.

Presentation is loading. Please wait.

What Is Association Mining?

Similar presentations


Presentation on theme: "What Is Association Mining?"— Presentation transcript:

1 What Is Association Mining?
Association rule mining: Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories. Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database [AIS93] Motivation: finding regularities in data What products were often purchased together? — Beer and diapers?! What are the subsequent purchases after buying a PC? What kinds of DNA are sensitive to this new drug? Can we automatically classify web documents?

2 Why Is Frequent Pattern or Association Mining Important?
Foundation for many essential data mining tasks Association, correlation, causality Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association Associative classification, cluster analysis, iceberg cube, fascicles (semantic data compression) Broad applications Basket data analysis, cross-marketing, catalog design, sale campaign analysis Web log (click stream) analysis, DNA sequence analysis, etc.

3 Association Rule Mining
Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction Market-Basket transactions Example of Association Rules {Diaper}  {Beer}, {Milk, Bread}  {Eggs,Coke}, {Beer, Bread}  {Milk}, Implication means co-occurrence, not causality!

4 Definition: Frequent Itemset
A collection of one or more items Example: {Milk, Bread, Diaper} k-itemset An itemset that contains k items Support count () Frequency of occurrence of an itemset E.g. ({Milk, Bread,Diaper}) = 2 Support Fraction of transactions that contain an itemset E.g. s({Milk, Bread, Diaper}) = 2/5 Frequent Itemset An itemset whose support is greater than or equal to a minsup threshold

5 Definition: Association Rule
An implication expression of the form X  Y, where X and Y are itemsets Example: {Milk, Diaper}  {Beer} Rule Evaluation Metrics Support (s) Fraction of transactions that contain both X and Y Confidence (c) Measures how often items in Y appear in transactions that contain X Example:

6 Basic Concepts: Frequent Patterns and Association Rules
Transaction-id Items bought 10 A, B, C 20 A, C 30 A, D 40 B, E, F Itemset X={x1, …, xk} Find all the rules XY with min confidence and support support, s, probability that a transaction contains XY confidence, c, conditional probability that a transaction having X also contains Y. Customer buys diaper buys both buys beer Let min_support = 50%, min_conf = 50%: A  C (50%, 66.7%) C  A (50%, 100%)

7 Association Rule Mining Task
Given a set of transactions T, the goal of association rule mining is to find all rules having support ≥ minsup threshold confidence ≥ minconf threshold Brute-force approach: List all possible association rules Compute the support and confidence for each rule Prune rules that fail the minsup and minconf thresholds  Computationally prohibitive!

8 Frequent Itemset Generation
Given d items, there are 2d possible candidate itemsets

9 Closed Patterns and Max-Patterns
A long pattern contains a combinatorial number of sub- patterns, e.g., {a1, …, a100} contains (1001) + (1002) + … + (110000) = 2100 – 1 = 1.27*1030 sub-patterns! Solution: Mine closed patterns and max-patterns instead An itemset X is closed if X is frequent and there exists no super-pattern Y כ X, with the same support as X (proposed by Pasquier, et ICDT’99) An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y כ X (proposed by SIGMOD’98) Closed pattern is a lossless compression of freq. patterns Reducing the # of patterns and rules

10 Closed Patterns and Max-Patterns
Exercise. DB = {<a1, …, a100>, < a1, …, a50>} Min_sup = 1. What is the set of closed itemset? <a1, …, a100>: 1 < a1, …, a50>: 2 What is the set of max-pattern? What is the set of all patterns? !!

11 Mining Association Rules
Example of Rules: {Milk,Diaper}  {Beer} (s=0.4, c=0.67) {Milk,Beer}  {Diaper} (s=0.4, c=1.0) {Diaper,Beer}  {Milk} (s=0.4, c=0.67) {Beer}  {Milk,Diaper} (s=0.4, c=0.67) {Diaper}  {Milk,Beer} (s=0.4, c=0.5) {Milk}  {Diaper,Beer} (s=0.4, c=0.5) Observations: All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer} Rules originating from the same itemset have identical support but can have different confidence Thus, we may decouple the support and confidence requirements

12 Mining Association Rules: What We Need to Know
Goal: Rules with high support/confidence How to compute? Support: Find sets of items that occur frequently Confidence: Find frequency of subsets of supported itemsets If we have all frequently occurring sets of items (frequent itemsets), we can compute support and confidence!

13 Mining Association Rules
Two-step approach: Frequent Itemset Generation Generate all itemsets whose support  minsup Rule Generation Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset Frequent itemset generation is still computationally expensive

14 Frequent Itemset Generation
Given d items, there are 2d possible candidate itemsets

15 Frequent Itemset Generation
Brute-force approach: Each itemset in the lattice is a candidate frequent itemset Count the support of each candidate by scanning the database Match each transaction against every candidate Complexity ~ O(NMw) => Expensive since M = 2d !!!

16 Computational Complexity
Given d unique items: Total number of itemsets = 2d Total number of possible association rules: If d=6, R = 602 rules

17 Frequent Itemset Generation Strategies
Reduce the number of candidates (M) Complete search: M=2d Use pruning techniques to reduce M Reduce the number of transactions (N) Reduce size of N as the size of itemset increases Used by DHP and vertical-based mining algorithms Reduce the number of comparisons (NM) Use efficient data structures to store the candidates or transactions No need to match every candidate against every transaction

18 Reducing Number of Candidates
Apriori principle: If an itemset is frequent, then all of its subsets must also be frequent If {beer, diaper, nuts} is frequent, so is {beer, diaper} i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper} Apriori principle holds due to the following property of the support measure: Support of an itemset never exceeds the support of its subsets This is known as the anti-monotone property of support

19 Illustrating Apriori Principle
Found to be Infrequent Pruned supersets

20 Illustrating Apriori Principle
Items (1-itemsets) Pairs (2-itemsets) (No need to generate candidates involving Coke or Eggs) Minimum Support = 3 Triplets (3-itemsets) If every subset is considered, 6C1 + 6C2 + 6C3 = 41 With support-based pruning, = 13

21 Apriori Algorithm Method: Let k=1
Generate frequent itemsets of length 1 Repeat until no new frequent itemsets are identified Generate length (k+1) candidate itemsets from length k frequent itemsets Prune candidate itemsets containing subsets of length k that are infrequent Count the support of each candidate by scanning the DB Eliminate candidates that are infrequent, leaving only those that are frequent

22 The Apriori Algorithm—An Example
Supmin = 2 Itemset sup {A} 2 {B} 3 {C} {D} 1 {E} Database TDB Itemset sup {A} 2 {B} 3 {C} {E} L1 C1 Tid Items 10 A, C, D 20 B, C, E 30 A, B, C, E 40 B, E 1st scan C2 Itemset sup {A, B} 1 {A, C} 2 {A, E} {B, C} {B, E} 3 {C, E} C2 Itemset {A, B} {A, C} {A, E} {B, C} {B, E} {C, E} L2 2nd scan Itemset sup {A, C} 2 {B, C} {B, E} 3 {C, E} C3 L3 Itemset {B, C, E} 3rd scan Itemset sup {B, C, E} 2

23 increment the count of all candidates in Ck+1 that are contained in t
The Apriori Algorithm Pseudo-code: Ck: Candidate itemset of size k Lk : frequent itemset of size k L1 = {frequent items}; for (k = 1; Lk !=; k++) do begin Ck+1 = candidates generated from Lk; for each transaction t in database do increment the count of all candidates in Ck that are contained in t Lk+1 = candidates in Ck+1 with min_support end return k Lk;

24 Important Details of Apriori
How to generate candidates? Step 1: self-joining Lk Step 2: pruning How to count supports of candidates? Example of Candidate-generation L3={abc, abd, acd, ace, bcd} Self-joining: L3*L3 abcd from abc and abd acde from acd and ace Pruning: acde is removed because ade is not in L3 C4={abcd}

25 How to Generate Candidates?
Suppose the items in Lk-1 are listed in an order Step 1: self-joining Lk-1 insert into Ck select p.item1, p.item2, …, p.itemk-1, q.itemk-1 from Lk-1 p, Lk-1 q where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1 Step 2: pruning forall itemsets c in Ck do forall (k-1)-subsets s of c do if (s is not in Lk-1) then delete c from Ck

26 Reducing Number of Comparisons
Candidate counting: Scan the database of transactions to determine the support of each candidate itemset To reduce the number of comparisons, store the candidates in a hash structure Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

27 How to Count Supports of Candidates?
Why counting supports of candidates a problem? The total number of candidates can be very huge One transaction may contain many candidates Method: Candidate itemsets are stored in a hash-tree Leaf node of hash-tree contains a list of itemsets and counts Interior node contains a hash table Subset function: finds all the candidates contained in a transaction

28 Generate Hash Tree Suppose you have 15 candidate itemsets of length 3: {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} You need: Hash function Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node) 2 3 4 5 6 7 1 4 5 1 3 6 1 2 4 4 5 7 1 2 5 4 5 8 1 5 9 3 4 5 3 5 6 3 5 7 6 8 9 3 6 7 3 6 8 1,4,7 2,5,8 3,6,9 Hash function

29 Association Rule Discovery: Hash tree
Hash Function Candidate Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 3,6,9 2,5,8 Hash on 1, 4 or 7

30 Association Rule Discovery: Hash tree
Hash Function Candidate Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 3,6,9 2,5,8 Hash on 2, 5 or 8

31 Association Rule Discovery: Hash tree
Hash Function Candidate Hash Tree 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 1,4,7 3,6,9 2,5,8 Hash on 3, 6 or 9

32 Subset Operation Given a transaction t, what are the possible subsets of size 3?

33 Subset Operation Using Hash Tree
1,4,7 2,5,8 3,6,9 Hash Function transaction 1 + 3 5 6 2 + 1 5 9 1 4 5 1 3 6 3 4 5 3 6 7 3 6 8 3 5 6 3 5 7 6 8 9 2 3 4 5 6 7 1 2 4 4 5 7 1 2 5 4 5 8 5 6 3 +

34 Subset Operation Using Hash Tree
1,4,7 2,5,8 3,6,9 Hash Function transaction 1 + 3 5 6 2 + 3 5 6 1 2 + 5 6 3 + 5 6 1 3 + 2 3 4 6 1 5 + 5 6 7 1 4 5 1 3 6 3 4 5 3 5 6 3 5 7 3 6 7 3 6 8 6 8 9 1 2 4 1 2 5 1 5 9 4 5 7 4 5 8

35 Subset Operation Using Hash Tree
1,4,7 2,5,8 3,6,9 Hash Function transaction 1 + 3 5 6 2 + 3 5 6 1 2 + 5 6 3 + 5 6 1 3 + 2 3 4 6 1 5 + 5 6 7 1 4 5 1 3 6 3 4 5 3 5 6 3 5 7 3 6 7 3 6 8 6 8 9 1 2 4 1 2 5 1 5 9 4 5 7 4 5 8 Match transaction against 11 out of 15 candidates

36 Factors Affecting Complexity
Choice of minimum support threshold lowering support threshold results in more frequent itemsets this may increase number of candidates and max length of frequent itemsets Dimensionality (number of items) of the data set more space is needed to store support count of each item if number of frequent items also increases, both computation and I/O costs may also increase Size of database since Apriori makes multiple passes, run time of algorithm may increase with number of transactions Average transaction width transaction width increases with denser data sets This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

37 Compact Representation of Frequent Itemsets
Some itemsets are redundant because they have identical support as their supersets Number of frequent itemsets Need a compact representation

38 Maximal Frequent Itemset
An itemset is maximal frequent if none of its immediate supersets is frequent Maximal Itemsets Infrequent Itemsets Border

39 Closed Itemset An itemset is closed if none of its immediate supersets has the same support as the itemset

40 Maximal vs Closed Itemsets
Transaction Ids Not supported by any transactions

41 Maximal vs Closed Frequent Itemsets
Closed but not maximal Minimum support = 2 Closed and maximal # Closed = 9 # Maximal = 4

42 Maximal vs Closed Itemsets

43 Alternative Methods for Frequent Itemset Generation
Traversal of Itemset Lattice General-to-specific vs Specific-to-general

44 Alternative Methods for Frequent Itemset Generation
Traversal of Itemset Lattice Equivalent Classes

45 Alternative Methods for Frequent Itemset Generation
Traversal of Itemset Lattice Breadth-first vs Depth-first

46 Alternative Methods for Frequent Itemset Generation
Representation of Database horizontal vs vertical data layout

47 Efficient Implementation of Apriori in SQL
Hard to get good performance out of pure SQL (SQL- 92) based approaches alone Make use of object-relational extensions like UDFs, BLOBs, Table functions etc. Get orders of magnitude improvement S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. In SIGMOD’98

48 Challenges of Frequent Pattern Mining
Multiple scans of transaction database Huge number of candidates Tedious workload of support counting for candidates Improving Apriori: general ideas Reduce passes of transaction database scans Shrink number of candidates Facilitate support counting of candidates

49 Partition: Scan Database Only Twice
Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB Scan 1: partition database and find local frequent patterns Scan 2: consolidate global frequent patterns A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB’95

50 DHP: Reduce the Number of Candidates
A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent Candidates: a, b, c, d, e Hash entries: {ab, ad, ae} {bd, be, de} … Frequent 1-itemset: a, b, d, e ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In SIGMOD’95

51 Sampling for Frequent Patterns
Select a sample of original database, mine frequent patterns within sample using Apriori Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked Example: check abcd instead of ab, ac, …, etc. Scan database again to find missed frequent patterns H. Toivonen. Sampling large databases for association rules. In VLDB’96

52 Bottleneck of Frequent-pattern Mining
Multiple database scans are costly Mining long patterns needs many passes of scanning and generates lots of candidates To find frequent itemset i1i2…i100 # of scans: 100 # of Candidates: (1001) + (1002) + … + (110000) = = 1.27*1030 ! Bottleneck: candidate-generation-and-test Can we avoid candidate generation?

53 Mining Frequent Patterns Without Candidate Generation
Grow long patterns from short ones using local frequent items “abc” is a frequent pattern Get all transactions having “abc”: DB|abc “d” is a local frequent item in DB|abc  abcd is a frequent pattern

54 FP-growth Algorithm Use a compressed representation of the database using an FP-tree Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

55 FP-tree construction null After reading TID=1: A:1 B:1

56 FP-Tree Construction null B:3 A:7 B:5 C:3 C:1 D:1 D:1 C:3 E:1 D:1 E:1
Transaction Database null B:3 A:7 B:5 C:3 C:1 D:1 Header table D:1 C:3 E:1 D:1 E:1 D:1 E:1 D:1 Pointers are used to assist frequent itemset generation

57 FP-growth Conditional Pattern base for D: P = {(A:1,B:1,C:1), (A:1,B:1), (A:1,C:1), (A:1), (B:1,C:1)} Recursively apply FP-growth on P Frequent Itemsets found (with sup > 1): AD, BD, CD, ACD, BCD null A:7 B:1 B:5 C:1 C:1 D:1 D:1 C:3 D:1 D:1 D:1

58 Tree Projection Set enumeration tree:
Possible Extension: E(A) = {B,C,D,E} Possible Extension: E(ABC) = {D,E}

59 Tree Projection Items are listed in lexicographic order
Each node P stores the following information: Itemset for node P List of possible lexicographic extensions of P: E(P) Pointer to projected database of its ancestor node Bitvector containing information about which transactions in the projected database contain the itemset

60 Projected Database Projected Database for node A: Original Database:
For each transaction T, projected transaction at node A is T  E(A)

61 ECLAT For each item, store a list of transaction ids (tids) TID-list

62 ECLAT Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets. 3 traversal approaches: top-down, bottom-up and hybrid Advantage: very fast support counting Disadvantage: intermediate tid-lists may become too large for memory

63 Rule Generation Given a frequent itemset L, find all non-empty subsets f  L such that f  L – f satisfies the minimum confidence requirement If {A,B,C,D} is a frequent itemset, candidate rules: ABC D, ABD C, ACD B, BCD A, A BCD, B ACD, C ABD, D ABC AB CD, AC  BD, AD  BC, BC AD, BD AC, CD AB, If |L| = k, then there are 2k – 2 candidate association rules (ignoring L   and   L)

64 Rule Generation How to efficiently generate rules from frequent itemsets? In general, confidence does not have an anti- monotone property c(ABC D) can be larger or smaller than c(AB D) But confidence of rules generated from the same itemset has an anti-monotone property e.g., L = {A,B,C,D}: c(ABC  D)  c(AB  CD)  c(A  BCD) Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

65 Rule Generation for Apriori Algorithm
Lattice of rules Pruned Rules Low Confidence Rule

66 Rule Generation for Apriori Algorithm
Candidate rule is generated by merging two rules that share the same prefix in the rule consequent join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC Prune rule D=>ABC if its subset AD=>BC does not have high confidence

67 Effect of Support Distribution
Many real data sets have skewed support distribution Support distribution of a retail data set


Download ppt "What Is Association Mining?"

Similar presentations


Ads by Google