Download presentation
Presentation is loading. Please wait.
Published byΜέλαινα Λαμέρας Modified over 5 years ago
1
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
2
Why Not Static CMOS? Advantages: Static (robust) operation, low power, scalable with technology. Disadvantages: Large size: An N input gate requires 2N transistors. Large capacitance: Each fanout must drive two devices. Alternatives: Pass-transistor logic (PTL), pseudo-nMOS, dynamic CMOS, domino CMOS. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
3
A Pseudo-nMOS Gate VDD VDD PUN Output Output PDN PDN Inputs Inputs
CMOS Gate Pseudo-nMOS Gate Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
4
Pseudo-nMOS NOR VDD Output Input 2 Input 3 Input 1
Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
5
Pseudo-nMOS NAND VDD Output Input 1 Input 2 Copyright Agrawal, 2007
ELEC6270 Spring 09, Lecture 15
6
Pseudo-nMOS Inverter VDD Output Input Copyright Agrawal, 2007
ELEC6270 Spring 09, Lecture 15
7
Inverter Characteristics
3.0 2.5 2.0 1.5 1.0 0.5 0.0 Nominal device: W 0.5μ ── = ──── = 2 Ln 0.25μ W/Lp = 4 Output voltage, V W/Lp = 0.5 W/Lp = 1 W/Lp = 2 W/Lp = 0.25 Input voltage, V Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
8
Performance of Inverter
Size, W/Lp Logic 0 voltage Logic 0 static power Delay 0 → 1 4 0.693 V 564 μW 14 ps 2 0.273 V 298 μW 56 ps 1 0.133 V 160 μW 123 ps 0.5 0.064 V 80 μW 268 ps 0.25 0.031 V 41 μW 569 ps J. M. Rabaey, A. Chandrakasan and B. Nokolić, Digital Integrated Circuits, Upper Saddle River, New Jersey: Pearson Education, 2003, page 262. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
9
Negative Aspects of Pseudo-nMOS
Output 0 state is ratioed logic. Faster gates mean higher static power. Low static power means slow gates. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
10
A Dynamic CMOS Gate VDD Precharge transistor Output PDN Inputs CL
Evaluate transistor CK Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
11
Two-Phase Operation in a Vector Period
CK Inputs Output Precharge low don’t care high Evaluation Valid inputs Valid outputs Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
12
4-Input NAND Dynamic CMOS Gate
VDD CK A B C D Output = CK’ + (ABCD)’∙ CK CL tL→H ≈ 0 Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
13
Characteristics of Dynamic CMOS
Nonratioed logic – sizing of pMOS transistor is not important for output levels. Smaller number of transistors, N+2 vs. 2N. Larger precharge transistor reduces output fall time, but increases precharge power. Faster switching due to smaller capacitance. Static power – negligible. Short-circuit power – none. Dynamic power no glitches – following precharge, signals can either make transitions only in one direction, 1→0, or no transition, 1→1. only logic transitions – all nodes at logic 0 are charged to VDD during precharge phase. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
14
Switching Speed and Power
Fewer transistors mean smaller node capacitance. No short-circuit current to slow down discharging of capacitance. Only dynamic power consumed, but can be higher than CMOS. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
15
Logic Activity Probability of 0 → 1 transition:
Static CMOS, p0 p1 = p0(1 – p0) Dynamic CMOS, p0 ≥ p0 p1 Example: 2-input NOR gate Static CMOS, Pdyn = CLVDD2fCK Dynamic CMOS, Pdyn = 0.75 CLVDD2fCK p1=0.5 p1=0.25 p0=0.75 p1=0.5 Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
16
Charge Leakage Precharge CK Evaluate VDD Output A’ CK A=0 A’ CL Ideal
Actual Time J. M. Rabaey, A. Chandrakasan and B. Nokolić, Digital Integrated Circuits, Upper Saddle River, New Jersey: Pearson Education, 2003. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
17
Bleeder Transistor VDD VDD CK A B C D CK A B C D Output Output CL CL
Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
18
A Problems With Dynamic CMOS
VDD VDD CK A B C prech. evaluate CK A=0→1 CK B C J. M. Rabaey, A. Chandrakasan and B. Nokolić, Digital Integrated Circuits, Upper Saddle River, New Jersey: Pearson Education, 2003. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
19
Remedy Set all inputs to gates to 0 during precharge.
Since precharge raises all outputs to 1, inserting inverters between gates will do the trick. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
20
Domino CMOS VDD VDD CK A B C prech. evaluate CK A=0→1 CK C B
R. H. Krambeck, C. M. Lee and H.-F. S. Law, “High-Speed Compact Circuits with CMOS,” IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp , June 1982. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
21
Bleeder in Domino CMOS VDD CK A Output B C CL D
Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
22
Logic Mapping for Noninverting Gates
AND A B C D E F G H ABC X Y G+H AND/OR OR ABC D E F G+H Y Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
23
Selecting a Logic Style
Static CMOS: most reliable and predictable, reasonable in power and speed, voltage scaling and device sizing are well understood. Pass-transistor logic: beneficial for multiplexer and XOR dominated circuits like adders, etc. For large fanin gates, static CMOS is inefficient; a choice can be made between pseudo-nMOS, dynamic CMOS and domino CMOS. Copyright Agrawal, 2007 ELEC6270 Spring 09, Lecture 15
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.