Presentation is loading. Please wait.

Presentation is loading. Please wait.

Improving Runtime and Memory Requirements in EDA Applications

Similar presentations


Presentation on theme: "Improving Runtime and Memory Requirements in EDA Applications"— Presentation transcript:

1 Improving Runtime and Memory Requirements in EDA Applications
Alan Mishchenko UC Berkeley

2 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

3 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

4 Network Traversal Optimizing memory allocation for DFS traversal
Storing fanins/fanouts in the node Using traversal IDs Using wave-front traversals Minimizing memory footprint

5 DFS-Friendly Memory Allocation
Optimize node memory for DFS traversal Allocate memory from an array in a DFS order Primary outputs 8 3 7 1 6 2 5 4 Primary inputs

6 Store Fanins/Fanouts in the Node
Embed the dynamic array into the node Leads to direct pointing or storing integer IDs of the fanin/fanouts In rare cases when memory reallocation is needed (<0.1% of nodes), use a new piece of memory to store extended array of fanins/fanouts struct Nwk_Obj_t_ { int nFanins; // the number of fanins int nFanouts; // the number of fanouts int nFanioAlloc; // the number of allocated fanins/fanouts Nwk_Obj_t ** pFanio; // fanins/fanouts }; pObj = (Nwk_Obj_t *)Aig_MmFlexEntryFetch( sizeof(Nwk_Obj_t) + sizeof(Nwk_Obj_t *) * (nFanins + nFanouts + p->nFanioPlus) ); pObj->pFanio = (Nwk_Obj_t **)((char *)pObj + sizeof(Nwk_Obj_t));

7 Traversal ID Use a specialized integer data-member of the node to remember the number of the last traversal that visited this node void Nwk_ManDfs_rec( Nwk_Man_t * p, Nwk_Obj_t * pObj, Vec_Ptr_t * vNodes ) { if ( Nwk_ObjIsTravIdCurrent(p, pObj) ) return; Nwk_ObjSetTravIdCurrent(p, pObj); Nwk_ManDfs_rec( p, Nwk_ObjFanin0(pObj), vNodes ); Nwk_ManDfs_rec( p, Nwk_ObjFanin1(pObj), vNodes ); Vec_PtrPush( vNodes, pObj ); } Vec_Ptr_t * Nwk_ManDfs( Nwk_Man_t * p ) Vec_Ptr_t * vNodes; Nwk_Obj_t * pObj; int i; Nwk_ManIncrementTravId( p ); vNodes = Vec_PtrAlloc(); Nwk_ManForEachPo( p, pObj, i ) Nwk_ManDfs_rec( p, pObj, vNodes ); return vNodes;

8 Wave-Front Traversals
Some applications use additional memory at each node Examples: Simulation, cut enumeration, support computation 1K per node for 1M nodes = 1Gb of additional memory! Case study: Computing input supports of each output of the network Used, for example, to compute (a) output partitioning, (b) register dependency matrix (A. Dasdan et al, “An experimental study of minimum mean cycle algorithms”, 1998) Code: procedure Aig_ManSupports() in file “abc\src\aig\aig\aigPart.c” Wave-front Wave-front Wave-front At any time during traversal, a wave-front is the set of nodes such that: all fanins are already visited and at least one fanout is not yet visited. Additional memory is only needed for the nodes on the wave-front. For most industrial designs, wave-front is about 1% of all nodes (1Gb  10Mb).

9 Minimizing Memory Footprint
When repeatedly traversing a large network, runtime is determined by memory pumped through the CPU (pointer chasing) Examples when repeated traversal cannot be avoided Sequential simulation of a network for many cycles Computing maximum-network flow during retiming, etc In such applications, it is better to develop a specialized, static, low-memory representation of the network Reducing memory 2x may improve runtime 3-5x Example: Most-forward retiming (code in “abc\src\aig\aig\aigRet.c”) If repeated topological and reverse topological traversals are performed, it may be better to have two networks, each having memory allocated to facilitate each traversal order

10 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

11 Implementation of AIG Package
Fixed amount of memory for each AIG node Arbitrary fanout also uses fixed amount of memory per node! Different memory configurations Structural hashing The only potentially non-cache-friendly operation Tricks to speed up structural hashing AIGER: Compact binary AIG representation format Work of Armin Biere (Johannes Kepler University, Linz, Austria) Available at

12 AIG Node ABC has several AIG packages
A low-memory package is used for simulation and equivalence checking A more elaborate package is used for general AIG manipulation 12 bytes (32b) / 12 bytes (64b) struct Gia_Obj_t_ { unsigned iDiff0 : 29; // the diff of the first fanin unsigned fCompl0: 1; // the complemented attribute unsigned fMark0 : 1; // first user-controlled mark unsigned fTerm : 1; // terminal node (CI/CO) unsigned iDiff1 : 29; // the diff of the second fanin unsigned fCompl1: 1; // the complemented attribute unsigned fMark1 : 1; // second user-controlled mark unsigned fPhase : 1; // value under 000 pattern unsigned Value; // application-specific value }; 36 bytes (32b) / 56 bytes (64b) struct Aig_Obj_t_ { Aig_Obj_t * pNext; // strashing table Aig_Obj_t * pFanin0; // fanin Aig_Obj_t * pFanin1; // fanin Aig_Obj_t * pHaig; // pointer to the HAIG node unsigned int Type : 3; // object type unsigned int fPhase : 1; // value under pattern unsigned int fMarkA : 1; // multipurpose mask unsigned int fMarkB : 1; // multipurpose mask unsigned int nRefs : 26; // reference count unsigned Level : 24; // the topological level unsigned nCuts : 8; // the number of cuts int Id; // unique ID int TravId; // ID of the last traversal union { // temporary storage void * pData; int iData; float fData; }; Observation: It is better to store node fanins as integer IDs rather than pointers.

13 Fixed-Memory Fanout for AIGs
Solution (due to Satrajit Chatterjee): Use 5 pointers (integers) for each node One pointer (integer) contains the first fanout of the node Other pointers (integers) are used to create two double-linked linked lists Each list stores fanout representation of the corresponding fanin Double-linked lists allow for constant-time addition/removal of node fanouts Code in file “abc\src\aig\aig\aigFanout.c” a b c NULL NULL n n n n node first fanout } fanouts of the first fanin } fanouts of the second fanin fanins

14 Structural Hashing The only potentially non-cache-friendly AIG operation Structural hashing is very valuable – but cannot avoid hashing The standard hash-table is used, with nodes having the same hash key being linked into single-linked lists The pointer to the next node is embedded in the AIG node Tried the linear-probing hash-table without improvement Trick to sometimes avoid hash-table look-up When building a new node, do not look it up in the table if at least one of its fanins has reference counter 0

15 AIGER Uses ~3 bytes per AIG node, on average
1M node AIG can be written into a 3Mb file ~12x more compact than Verilog, BLIF, or BENCH ~5x faster reading/writing for large files Key observations used by AIGER To represent a node, two integers (fanin literals) need to be represented The fanin literals are often numerically close Only the difference between them can be stored, which typically takes only one byte

16 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

17 SAT Solver A modern SAT solver (in particular, MiniSAT) is a treasure-trove of tricks for efficient implementation To mentions just a few Representing clauses as arrays of integers Using signatures to check clause containment Using two-literal watching scheme etc

18 SAT Solver (What’s Missing?)
Most of the modern SAT solvers are geared to solving hard problems, such as those encountered in SAT competitions (1 problem ~ 15 min) This motivates elaborate data-structures and high memory usage 64 bytes per variable; 16 bytes per clause; 4 bytes per literal In ABC, runtime of several applications is dominated by SAT SAT sweeping Sequential SAT sweeping (register/signal correspondence) Accumulation of structural choices Computing don’t-cares in a window The SAT problems solved in these applications have much in common Incremental (each problem has +/- 10 AIG nodes, compared to the previous problem solved) Relatively easy (less than 100 conflicts) Numerous (10K-100K problems) Based on these observations, a new efficient circuit-based SAT solver was developed (abc\src\aig\gia\giaCSat.c)

19 Experimental Results (SAT)

20 Experimental Results (CEC)
CEC results for 8 hard industrial instances. Runtime in minutes on Intel 2.66 Ghz. Time1 is “cec” in ABC809xx. Time2 is “&cec” in abc Timeout is 1 hour. Less than 100 Mb of RAM was used in these experiments.

21 Why MiniSAT Is Slower? Requires multiple intermediate steps
Window  AIG  CNF  Solving Instead of Window  Solving Uses too much memory Solver + CNF = 140 bytes / AIG node Instead of bytes / AIG node Decision heuristics Are not aware of the circuit structure Instead of Using circuit information

22 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

23 BDD Package Similar to a SAT solver, a modern BDD package is a well-researched computation engine, which performs Boolean function manipulation Garbage collection Dynamic variable reordering etc The usefulness of BDD package is limited since the arrival of AIGs (2000) and efficient SAT solvers (2001) However, some applications still rely on BDDs (for example, exact reachability analysis) This motivates building a better BDD package

24 BDD Package (What’s Missing?)
How a modern BDD package can be improved? Make it pointer-independent (!) Leads to reproducible results across different runs / platforms Improve CPU cache behavior by using 8 bytes per node Present packages use 16 or 32 bytes (on a 32- or 64-bit computer) Improve dynamic variable reordering Currently, it is very slow (~1M BDD nodes takes ~5 min) Apply variable reordering more frequently Rather than wait to BDD to grow large followed by slow reordering These and other ideas are currently being implemented

25 Minimalistic BDD Data-Structure
Node representation Node storage (8 bytes per node) Next pointers (4 bytes per node) Unique table (4 bytes per node) Computed table (16 bytes per entry) External referencing Two relatively small arrays of integers Variable / Level mapping Dynamic variable reordering Temporary storage for nodes (8 bytes per node) Temporary reference counters (4 bytes per node) Temporary marks (1 bit per node)

26 BDD Node Representation
struct Bdd_Node_t // 64 bits = 8 bytes { unsigned f0 : 24; // negative cofactor unsigned c0 : 1; // complemented attribute of negative cofactor unsigned f1 : 24; // positive cofactor unsigned lev : 15; // level }; This node structure is optimized for frequent traversals Allows for building BDDs with ~32K variables and ~16M nodes

27 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

28 Custom Memory Management
Three types of memory managers in ABC Fixed-size Allocates/recycles entries of a fixed size Used for AIG nodes Flexible-size Allocates (but does not recycle) entries of variable size Used for signal names Step-size Steps are degrees of 2 ( etc) in bytes Use for CNF clauses in the customized version of MiniSat Code in package “abc\src\aig\mem”

29 Overview Introduction Topics Conclusion Network traversal AIG package
SAT solver BDD package Memory management Locality of computation Conclusion

30 Locality of Computation
To improve speed Use less memory Make transformations local Use contiguous data-structures Case study: BDDs vs. truth tables (TTs) In the past: “BDDs are present-day truth tables” These days: “Truth tables are present-day BDDs” Advantages of TTs Computation is more local Memory usage is predictable For functions up to 16 vars, TTs lead to faster computation ISOP, DSD, matching, decomposition, etc Limitations of TTs Does not work for more than 16 variables Some operations are faster using BDDs, even for functions with 10 variables E.g. cofactor satisfy counting

31 Conclusion Lessons learned while developing ABC Topics considered
Network traversal AIG representation SAT solving Memory management Locality of computation Locality of computation is important Allows for efficient control of the resources Leads to scalability and parallelism


Download ppt "Improving Runtime and Memory Requirements in EDA Applications"

Similar presentations


Ads by Google