Download presentation
Presentation is loading. Please wait.
1
Extragalactic jets: a new perspective
G. Ghisellini in coll. with F. Tavecchio INAF-OABrera Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets
2
FRI-FRII & Blazars
3
Blazars: Spectral Energy Distribution
Radio IR Opt UV X MeV GeV Inverse Compton (also possible hadronic models) Synchro
4
The “blazar sequence” BL Lacs LBL and HBL
FSRQs BL Lacs LBL and HBL Fossati et al. 1998; Donato et al. 2001
5
gpeaknB 2 Fossati et al. 1998; Donato et al. 2001
6
gpeak is the energy of electrons emitting at the peak of the SED
By modeling, we find physical parameters in the comoving frame. gpeak is the energy of electrons emitting at the peak of the SED TeV BL Lacs EGRET blazars
7
Low power slow cooling large gpeak
Big power fast cooling small gpeak
8
Power of jets in blazars
9
Power of jets in blazars
10
Power of jets in blazars
11
The power of blazar jets
G Lr = radiation Le = relat. electrons Lp = protons LB = B-field R Rdiss ~1017 cm
12
Ghisellini, Foschini, Tavecchio, Pian 2007
AGILE! 3C 454.3 Swift
13
Powerful jets are not magnetically dominated
High power If one p per e- Relat. electrons Celotti & Ghisellini 2007 Powerful jets are not magnetically dominated Magnetic Field Radiation Celotti GG 2008
14
Celotti GG 2008, Maraschi et al. 2008
15
Disk accretion rate (Eddington units)
Jet power vs disk Lum. GRBs BL Lacs, FSRQ, mQSO Photon trapping Ldisk Pjet e-p decoupling Disk accretion rate (Eddington units)
16
Pause Jet power is large. More than Ldisk
Matter dominated. Not many pairs LB is small Powerful jets must be radiatively inefficient Powerful jets do not decelerate
17
A new blazar sequence Old one: based on 1 parameter: the observed luminosity Now: info on mass and accretion rate (spin? not yet) Info on jet power vs disk luminosity Info on location of dissipation: must be at some distance from BH. One zone is dominant (internal shocks?)
18
The key ideas Rdiss proportional to MBH
RBLR proportional to (Ldisk) UBLR=cost For Ldisk/LEdd < Lc no BLR (BL Lacs) 1/2
19
Ledlow & Owen Ghisellini & Celotti 2001
20
The key ideas Rdiss proportional to MBH
RBLR proportional to (Ldisk) UBLR=cost For Ldisk/LEdd < Lc no BLR (BL Lacs) LB = eB Pjet B propto R-1 Le = ee Pjet 1/2
21
LB = eB Pjet B propto R-1 Le = ee Pjet Celotti & Ghisellini 2008
22
The key ideas Rdiss proportional to MBH
RBLR proportional to (Ldisk) UBLR=cost For Ldisk/LEdd < Lc no BLR (BL Lacs) LB = eB Pjet B propto R-1 Le = ee Pjet gpeak propto U-1; U-1/2 1/2
23
The key ideas The key ansatz
Rdiss proportional to MBH RBLR proportional to (Ldisk) For Ldisk/LEdd < Lc no BLR (BL Lacs) LB = eB Pjet Le = ee Pjet gpeak propto U-1; U-1/2 1/2 The key ansatz Pjet always proportional to M
24
M Ljet propto Ldisk M2 1/2 Ljet propto Ldisk ADAF (Narayan et al.)
25
Simple consequences Rdiss propto M; RBLR propto (Ldisk)1/2
Low M, High L Red quasar BLR High M, Low L Blue quasar
27
Simple consequences Small M, small Ljet, large B, red UBLR ~ the same
Large UB
32
Give me MBH and Ldisk (or LBLR) and I will tell you the SED of the jet and its power
33
Conclusions Pjet > Ldisk Jets are matter dominated
Link between M, M and observed SED “Blue” FSRQs may exist “Red” low power FSRQs may exist Implications about evolution GLAST + Swift + M + Ldisk (or LBLR)
34
AGILE GLAST Fossati et al. 1998; Donato et al. 2001 CT Swift
36
AGILE GLAST Fossati et al. 1998; Donato et al. 2001 CT Swift
37
Low power If one p per e- Relat. electrons Magnetic Field Radiation
Celotti & Ghisellini 2007 Magnetic Field Radiation
38
TeV BL Lacs
39
Subluminal motion for all TeV sources?
Mkn 421 bapp~ 0.03 – 0.1 (+-0.06) H bapp~ 2.09 (+-0.53) Mkn 501 bapp~ 0.05 – 0.54 (+-0.15) bapp~ 0 bapp~ 0.93 (+-0.31) bapp~ 0 – 1.15 (+-0.5) Piner, Pant & Edwards 2008
40
Cospatial fast spine & slow layer
1015 cm DRl~1016 cm DRs~1014 cm
41
More seed photons for both
G’ = GlayerGspine(1-blayerbspine) The spine sees an enhanced Urad coming from the layer Also the layer sees an enhanced Urad coming from the spine The IC emission is enhanced wrt to the standard SSC model
42
BL Lac Radiogalaxy
43
spine layer Ghisellini Tavecchio Chiaberge 2005
Tavecchio Ghisellini 2008
44
Power of jets
45
Coordinated variability at different n
Mkn 421 TeV PDS MECS LECS
46
G=10-20 Dissipation here? Yes! Dissipation here? NO! ~1017 cm
RBLR~1018 cm Leptonic models: Maraschi Ghisellini Celotti 1992 Dermer Schlickeiser 1993 Sikora Begelman Rees 1994 Blandford Levinson 1995 Ghisellini Madau 1996 Dissipation here? NO! But see e.g.: Mannheim 1993; Aharonian 2002; Rachen 2000 for proton models
47
Energy transport in inner jet must be dissipationless
Importance of g-rays If g-g important too many X-rays dx,g>1 (>10) Rblob large enough (>1016 cm), but tvar<1day Rblob <2.5x1015 tvard cm Blob away from accretion disk X-ray corona (>1017 cm) Energy transport in inner jet must be dissipationless
49
Ravasio et al. 2000
50
Fossati et al. 1998
51
Gamma-ray blazars EGRET: ~60 blazars
Cherenkov: 21 blazars (+1 Radiogal) GLAST The Universe becomes opaque at z~0.1 at 1TeV at z~2 at 20 GeV HESS+ MAGIC
52
The VHE extragalactic gamma-ray sky
20 BL Lacertae (18 HBL + 2 LBL)) 1 radiogalaxy (M87, 16 Mpc) 1 FSRQs (3C279, z=0.536) Name Redshift Mkn Mkn 1ES Mkn 1ES PKS BL Lacertae PKS RGB ON231 (W Comae) PKS H 1ES 1ES H 1ES 1ES 1ES 1ES PG
56
Extragalactic jets: a new perspective
G. Ghisellini in collaboration with F. Tavecchio INAF – Osservatorio Astronomico di Brera The blazar sequence Power and content of jets A new perspective
57
tcool 1/(gpeak U) = R/c 2 g gpeakU = const
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.