Download presentation
Presentation is loading. Please wait.
Published byMiguel Madden Modified over 11 years ago
1
ENTANGLEMENT AND QUANTUM CONTROL OF COLD ATOMS CONFINED IN AN OPTICAL LATTICE CARLO SIAS Università di Pisa Quantum Computers, algorithms and chaos – Varenna 4-15/07/2005 with Roberto Franzosi, Matteo Cristiani, and Ennio Arimondo
2
Entanglement in an Optical Lattice D. Jaksch et al., Phys Rev Lett. 82, 1975 (1999) O. Mandel et al. Nature (London) 425, 937 (2003)
3
Entanglement in an Optical Lattice D. Jaksch et al., Phys Rev Lett. 82, 1975 (1999) O. Mandel et al. Nature (London) 425, 937 (2003)
4
Entanglement in an Optical Lattice D. Jaksch et al., Phys Rev Lett. 82, 1975 (1999) O. Mandel et al. Nature (London) 425, 937 (2003)
5
– Lattice
7
Experimental Realizations with BEC Morsch et al. PRL 87,140402 (2001) = 780 nm, d = 1.56 m, = 29 deg Hadzibabic et al. PRL 93,180403 (2004) = 532 nm, d = 2.7 m, = 11.5 deg Albiez et al. PRL 95,010402 (2005) = 811 nm, d = 5.2 m, = 9 deg
8
Single site addressing? F=2 F=1 2 E m F =2 m F =1 3( i+1 - i )=3m F g F B b(x i+1 - x i ) xixi x i+1 B x
9
Single site addressing? F=2 F=1 2 E m F =2 m F =1 3( i+1 - i )=3m F g F B b(x i+1 - x i ) xixi x i+1 B x Albiez et al. b=10 Gcm -1 ( i+1 - i ) 30Khz
10
Filling the lattice Hadzibabic et al. PRL 93,180403 (2004) 30 condensates of 10 4 atoms
11
Filling the lattice Hadzibabic et al. PRL 93,180403 (2004) 30 condensates of 10 4 atoms = 15Hz x 2 2R 17m
12
Analytical calculation F=1 (+) (-) (+) E x =0 m F =+1m F =0m F =-1 x Y z
13
Analytical calculation F=1 (+) (-) (+) E x =0 m F =+1m F =0m F =-1 x Y z F=1 m F =+1m F =0m F =-1 E x 0
14
Analytical calculation
16
Conclusions - lattice for single site addressing in an optical lattice Interactions with single atoms by use of a magnetic field gradient N=1 filling factor in a 3D lattice Strong dependence on the polarization of the lattice beams
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.