Download presentation
Presentation is loading. Please wait.
Published byMartha Thruston Modified over 10 years ago
1
Spectroscopy on Atoms and selection rules
2
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 I - What is an atom? Modeling ? •N-electrons bound to a nucleus (Z) • N-electrons in interactions •N-electron atom wave function with satisfies
3
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model – no spin •Lets introduce the spherically symmetric potential with •Re-writing the total Hamiltonian Screening of the nucleus
4
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model – no spin •The Schrodinger equation for the central field is separable in N equations since all particles are independent •Schrodinger equation in a central field for the electron i with the “natural” solution Set of good quantum numbers The radial part is not the solution of the hydrogen. The different l-states are not degenerate
5
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model •Spin and the Pauli exclusion principle Electron are fermions of spin ½, so that the wave function must be anti symmetric in the spatial an spin coordinates q i of the electrons •Building up a wave function for N electrons – Slater determinants with
6
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model •Basis set to describe an electronic state – LS representation Electronic configuration Close shell electrons Electronic configuration Open shell electrons Total orbital angular momentum Total spin momentum •Russel-Saunders notation
7
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model •Apply a perturbation W on the operator H 0 First order Second order is required if •To be considered in the Hamiltonian Electronic correlation ( Z 2 ) Spin orbit ( Z 4 ) and more terms…
8
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model LS - coupling JJ - coupling First perturbation Second perturbation Dipole Selection rules
9
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model Fine structure with LS-coupling Hund’s rule 1.the term with the largest possible value of S for a given configuration has the lowest energy; the energy of the other terms increases with decreasing S 2.For a given value of S, the term having the maximum possible value of L has the lowest energy
10
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model Fine structure with JJ-coupling
11
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Summary •Define a basis to describe the electronic structure – simple model : independent-particle model •Use this basis to describe the fine structure –more sophisticated model including electron correlations, relativistic term –coupling scheme informs on the interactions LS-coupling JJ-coupling Intermediate coupling
12
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 II - Experimental manifestation •Photo-ionization cross section •Photo-absorption and Photo-ionisation •Auger
13
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-ionization cross section Argon Krypton Xenon HeliumNeon Samson et al, J. Elec. Spec. Rel. Phenom, 123,265 (2002) A + h A +(*) + e - Global decrease Cooper Minimum New edges
14
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Ionization cross section – Global decrease Energy r Potential Unbound states Bound states
15
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Ionization cross section – Cooper minima Cooper, Phys. Rev. 128, 681 (1962) =0
16
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – one core He + h He +(*) [ 1 S 1/2 ] + e - (”p”) Photon energy Kinetic Energy (E k ) He + [ 1 S 1/2 ]
17
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – two cores Xe + h Xe +(*) [ 2 P Jc ] + e - (”s”, ”d”)
18
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization – two cores Photon energy (eV)
19
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization – parametrization Xe + ( 2 P 3/2 ) Xe + ( 2 P 1/2 ) Closed channel Open channel cc dd V Parameterization of the resonance a : is the cross section |A c | 2 q: is the profile index A d /(V*A c ) is the reduced energy (E-E r )/( /2) is resonance width 2 |V E | 2
20
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization - parametrization U. Fano, Phys. Rev. 124, 1866 (1961)
21
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – in the continuum He +* (2s) He + (1s) Ion yield Fluorescence yield V hh
22
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Tips: Rydberg series assignment Generalized Rydberg formulae IP: Ionization potential R: Rydberg constant (109736,86 cm -1 ) n: principal quantum number, n* effective principal quantum number : quantum defect
23
Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auger Core ionization Normal auger Two holes A 2+ Resonant ionization Spectator Participator Resonant auger Continuum Empty valence Inner shell Occupied valence One hole A + One hole- One particle A +*
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.