Download presentation
1
BJT, Bipolar Junction Transisor
Base Current Controls Output current Bollen
2
AGENDA BJT transistorman Transistor types Bipolar Junction Transistor
BJT models parameters water model NPN and PNP operation modes switch open switch closed BJT linear, controlled current source active operation characteristics DC input characteristics ac input characteristics BJT DC biasing circuits base bias base bias + collector feedback base bias + emitter feedback voltage divider Bollen
3
BJT, transistor man Bollen
4
Transistor Types Output current controlled by input current BJT =
Bipolar Junction Transistor FET = Field Effect Transistor Output current controlled by input voltage Bollen
5
BJT, Bipolar Junction Transisor
Transistor = Transfer Resistor BE Forward bias, BC Reverse bias So low ohmic high ohmic Bollen
6
BJT, Bipolar Junction Transisor
Emitter = Sent electrons Base = Base Collector = Get electrons Bollen
7
BJT, Models Bollen
8
BJT, parameters Bollen
9
BJT, Water model Bollen
10
BJT, Water model Bollen
11
BJT, NPN and PNP Bollen
12
BJT, Operation modes Cut-off and saturation; BJT is used as a switch
Active operation Quiecent Point; BJT is used as a controlled current source, or analog amplifier Bollen
13
BJT, Switch open Bollen
14
BJT, Switch closed Bollen
15
BJT, Lineair, controlled current source
Bollen
16
BJT, active operation Bollen
17
BJT, characteristics DC model ac model
DC model; Vbe = 0V Ube, Uce, Ic, Ib, Ie Capitals ac model; re = 26mV/Ie ube, uce, ic, ib, ie Low cases Bollen
18
BJT, DC input characteristics
Vbe = 0V7 Bollen
19
BJT, AC input characteristics
re = 26mV/Ic The dynamic resistor can be calculated by the DC current Ic Bollen
20
BJT, characteristics Bollen
21
BJT, DC biasing circuits
A base bias B base bias + emitter feedback C base bias + collector feedback D voltage divider Bollen
22
BJT, base bias, introduction
Base current determined by Vcc, Rb and Vbe Bollen
23
BJT, base bias Calculate Ib and then Ic
Ic directly dependent on ß variation So, for stability a “bad” circuit Bollen
24
BJT, base bias load line Q-point = Quiecient point = Working point
Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” Bollen
25
BJT, base bias load line Reliable circuit = Q-point stability
Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” Bollen
26
BJT, base bias load line Vce always > 0V7 BC junction REVERSE
If Rc too big, transistor in saturation; then; Bollen
27
BJT, base bias load line Vce always > 0V7 BC junction REVERSE
If Vcc too small, transistor in saturation; then; Bollen
28
BJT, base bias example Calculate; Ib, Ic URc, Uc, Uce
Draw output caracteristic Calculate now; Uce if ß = 40 How many % did Uce Change Ib = 47 uA, Ic = 2,35 mA, URc = 5,17 V, Uc = 6,83 V, Uce = 6,83 V Uce (for ß = 40) = 7,86 Ξ 15 % Bollen
29
BJT, base bias example Ib = 33 uA, Ic = 2,9 mA URc = 7,9 V, Uc = 8,1 V
Rb = 282,5 kΩ, Ic = 3,2 mA, Rc = 1,855 kΩ Bollen
30
BJT, base bias example ß = 200, VRc = 8,8 V Vcc = 16 VRb = 765 kΩ
Bollen
31
BJT, base bias + emitter feedback
Base current determined by Vcc, Rb, Vbe and Ve More stable for ß variations, than base bias. Bollen
32
BJT, base bias + emitter feedback
Always calculate in the smallest current Ib !! Bollen
33
BJT, base bias + emitter feedback
Load line is the loading of the transistor seen from Uce (>0V7) Vcc, Rc and Re determines the; “open voltage” and the “short circuit current” Bollen
34
BJT, base bias + emitter feedback example
Calculate; Ib, Ic URc, Uc, Ue, Uce Draw output caracteristic Ib = 6,2 uA, Ic = 0,74 mA, URc = 8,9 V, Uc = 7,1 V, Ue =-0,9 V, Uce = 8,0 V Bollen
35
BJT, base bias + emitter feedback example
Calculate; Ib, Ie URe, Ue, Uce Draw output caracteristic Ib = 24 uA, Ie = 2,9 mA, URc = 3,5 V, Ue = -2,5 V, Uce = 2,5 V Bollen
36
BJT, base bias + collector/emitter feedback
If Ic > then Uc < then Ib < If Ic > then Uc < and Ue > then Ib < Bollen
37
BJT, base bias + collector feedback
Always calculate in the smallest current Ib !! The current through Rc is not Ic but Ic + Ib, so (β+1)Ib !!! If Ic rises for any reason, then Uc falls and also Ib decreases, so then Ic decreases Bollen
38
BJT, base bias collector feedback example
Calculate; Ib, ß, Ic Draw output caracteristic Ib = 13 uA, ß = 196, Ic = 2,5 mA Bollen
39
BJT, base bias collector/emitter feedback
Always calculate in the smallest current Ib !! Bollen
40
BJT, base bias collector/emitter feedback ex
Calculate; Ib, Ie URc, Uc, Ue, Uce Draw output caracteristic Ib = 11,8 uA, Ie = 1,1 mA URc = 5,2 V, Uc = 4,8 V Ue = 1,3 V, Uce = 3,5 V Bollen
41
BJT, voltage divider Vb is a stable voltage - 0,7 V =
so Ve is a stable voltage Ie is determined by Ve/ Re Ic = Ie . ß/(ß+1) Ic is very stable and nearly independent to ß variation, as long as ß is BIG in value 2 methods of calculating Ic - neglegting Ib, use voltage divider - not neglecting Ib and use thevenin Bollen
42
BJT, voltage divider, neglect Ib
So neglegt Ib to R2, or in general Ri >> R2 In practice 10 times bigger Bollen
43
BJT, voltage divider, exact, thevenin
Thevenin resistance R1 // R2 62k // 9k1= 7k9 Thevenin voltage Bollen
44
BJT, voltage divider, exact, thevenin
7k9 2V0 Ib = 20 uA Bollen
45
BJT, voltage divider, example
Thevenin resistance = 6k8 Thevenin voltage = 3V1 Ib = 18,8 uA Ic = 2,25 mA re = 11,5 Ω URc = 7V4 Uc = 10V6 Ue = 2V3 Uce = 5V1 Bollen
46
BJT, voltage divider, example
Thevenin resistance = 255k Thevenin voltage = 0V0 Ib = 14,3 uA Ic = 1,9 mA re = 14 Ω URc = 17V3 Uc = 0V7 Ue = -3V7 Uce = 4V4 Bollen
47
BJT Bollen
48
BJT Bollen
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.