Download presentation
Presentation is loading. Please wait.
Published byEva Blamer Modified over 10 years ago
1
Course Situation and Event Driven Models for Multilevel Abstraction Based Virtual Engineering Spaces Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory 3. Boundary representation of solids László Horváth university professor http://users.nik.uni-obuda.hu/lhorvath/
2
A prezentációban megjelent képernyő-felvételek a CATIA V5 PLM rendszernek, az Óbudai Egyetem Intelligens Mérnöki Rendszerek Laboratóriumában telepített installációján készültek, valóságos működő modellekről, a rendszer saját eszközeivel. Ez a prezentáció szellemi tulajdon. Hallgatóim számára rendelkezésre áll. Minden más felhasználása és másolása nem megengedett! CATIA V5 PLM rendszer a Dassult Systémes Inc. é s a CAD-Terv Kft segítségével üzemel laboratóriumunkban László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/
3
Topology and geometry László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ Contextual group of surfaces in a boundary. Individual surface can be translated.
4
Topology and geometry László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ Individual closed contour also can be translated.
5
Topology and geometry László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ Solid is defined in the context of the translated contour. By its definition, this solid is a boundary representation (B-rep).
6
Topology and geometry László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ The main idea of the topology is the polyhedron model. It has not shape. Points, curves, and surfaces in geometry are mapped to vertices, edges, and faces in the topological representation, accordingly.
7
Build up of topology László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ Single vertex and polygon ready to accept extension for geometry Complete edge-vertex structure Edge removal and vertex fusion operations
8
Build up of topology László Horváth UÓ-JNFI-IAM http://users.nik.uni-obuda.hu/lhorvath/ MEV – make edge and vertexMEF– make edge and faceKEMR – kill edge make ring Local Euler operators
9
Positional and DOF connection of solids László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ See examples in the laboratory task SEMAL3E1
10
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Solid base feature. Represented by a solid consisting of four lumps.
11
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Topological faces and edges are selected for filleting.
12
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Points are selected on an edge for local radius value.
13
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of solid between a complex boundary and its offset. Selected topological faces are removed for this purpose.
14
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Hole definition acts on two lumps in a single solid.
15
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Additional holes are defined to accept connecting bodies.
16
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Material is defined and visualization is rendered accordingly.
17
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Two more parts are defined as boundary represented solid body.
18
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Two components are connected by two coincidence relationships (constraints).
19
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of coincidence relationship (constraint).
20
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Changing surface contact constraint for offset one in order to accommodate a new component.
21
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of a new component as part model in the context of two previously connected components.
22
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of a new component as part model in the context of two previously connected components.
23
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of a mechanism in order to simulate kinematics. Four joints are auto created on the basis of constraints definitions.
24
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Definition of driving command for the joint Revolute.3.
25
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/ Simulation of mechanism for the ability of demanded motion.
26
Laboratory task SEMAL3E1 László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.