Download presentation
Presentation is loading. Please wait.
Published byZoie Barrows Modified over 10 years ago
1
Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory 1. Virtual engineering An outline of basic methods in virtual space László Horváth university professor http://nik.uni-obuda.hu/lhorvath/
2
A prezentációban megjelent képernyő-felvételek a CATIA V5 PLM rendszernek, az Óbudai Egyetem Intelligens Mérnöki Rendszerek Laboratóriumában telepített installációján készültek, valóságos működő modellekről, a rendszer saját eszközeivel. Ez a prezentáció szellemi tulajdon. Hallgatóim számára rendelkezésre áll. Minden más felhasználása és másolása nem megengedett! CATIA V5 PLM rendszer a Dassult Systémes Inc. é s a CAD-Terv Kft segítségével üzemel laboratóriumunkban László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
3
Contents Representation of physical worlds Product model and its components Area dependence of virtual spaces Role of virtual systems in engineering Lecture Overlook of an engineering virtual space (VE1.1) Contextual object definition (VE1.3) Product structure and its application at model changes (VE1.4) Laboratory Functionality of a complex engineering system (VE1.2) László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
4
Role of virtual systems in engineering Model space comprising representation of elements, relationships, and Interactions of product to be produced and operated in an environment Simulations and analyses to answer the question: How the product will behave in a given environment. Virtual prototype development. Physical world connections (Digitized information, equipment control program, data from sensors, data for rapid prototyping) Human interactions Construction of product model László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
5
Representation of physical worlds Drawing space (Documentation) Object space (model) Virtual space (intelligent model) Physical world connections (Digitized information, equipment control program, data from sensors, data for rapid prototyping) Product model Procedures Control of procedures Authorized, responsible humans It is based on processing of knowledge. Knowledge must be verified and accepted by company, project, product development, and individuals. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
6
Representation of physical worlds Integrated engineering in the old times Engineering separated into areas (Manual then computer aided) Concurrent engineering in integrated systems (Computer aided …) Product Lifecycle Management Virtual space László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
7
Representation of physical worlds Definition in model space Partial solutions CAD/CAM/CAE, etc. (70-90’s) Product model STEP ISO 10303 (80-90’s) Form feature Boundary representation (90’s) Early achievements Product model for PLM Object structure Contextual connections Object representations Model space parameters Active knowledge for situations and events Current virtual technology Developing virtual technology Full integration Situation and event based Contextual definition Object model Knowledge ware László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
8
Contextual chains László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
9
Product model and its components Engineer: Selects object Engineer: Defines values for parameters Selection Numerical, text Graphically Uses engineering calculations Selects option (navigator) Utilizes assistance by knowledge based advising Procedure: Generates data structures and places them in the pool. Visualizes. In model space (pool) In data base: for working master model In model space In selected plane Model (world) coordinate system Local c. s. Model space Work in selected plane Transformation László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
10
Area dependence of virtual space Model space for shape centered product description Engineering areas Mechanical Electrical Electronic Computer Etc. All objects in a single product structure Product areas Automotive Household Computer Etc. Object areas M echanical parts and units Circuit boards Manikin Knowledge Loads Etc. Human interactions László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
11
Area dependent characteristics of virtual space Creating and analysis of curve and surface. To be used in boundary of a solid shape. Solid with boundary representation. Structure of topological and geometrical entities. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
12
Area dependence of virtual spaces Parts are partially placed on each other by the Coincidence.1 constraint. Parts are not placed on each other Two parts in the assembly space. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
13
Area dependence of virtual spaces Visualization of results in the form of color range code. Definition of force on geometry Finite element analysis. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
14
Manikin for ergonomic analysis. Area dependence of virtual spaces Curvature analysis on surfaces of a solid. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
15
Overlook of an engineering virtual space Laboratory task VE1.1 Understanding virtual space and its characteristics. Placing shape objects in a virtual space. Understanding space and working plane. Navigation by space pilot. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
16
Functionality of a complex engineering system Laboratory task VE1.2 Groups of functions and their connection. Illustrating area dependence of a virtual space. Concluding elements and human control of a virtual space. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
17
Contextual object definition Laboratory task VE1.3 Definition of a prism object in the context of a closed spline. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
18
Contextual object definition Laboratory task VE1.3 Definition of a prism object in the context of a closed spline. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
19
Contextual object definition Laboratory task VE1.3 Application of the resulted prism as base feature then modifying by shell and fillet form features. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
20
Contextual object definition Laboratory task VE1.3 Application of the resulted prism as base feature then modifying by shell and fillet form features. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
21
Contextual object definition Laboratory task VE1.3 Modification of a control point of the closed spline and recognition of contextual chain. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
22
Contextual object definition Laboratory task VE1.3 Modification of a control point of the closed spline and recognition of contextual chain. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
23
Contextual object definition Laboratory task VE1.3 Definition of a prism in the context of a rectangle on a plain. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
24
Contextual object definition Laboratory task VE1.3 Definition of a prism in the context of a rectangle on a plain. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
25
Product structure and its application at model changes Laboratory task VE1.4 Understanding product structure and its levels. Selecting objects in the structure for modification. Studying representation and structure of the rectangle. Studying structure of the model constructed in laboratory task VE1.3. László Horváth UÓ-JNFI-IAM http://nik.uni-obuda.hu/lhorvath/
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.