Download presentation
Presentation is loading. Please wait.
Published byTyler Payne Modified over 11 years ago
1
Bonn, 04. September 2009 Mitglied der Helmholtz-Gemeinschaft Pionic Deuterium | Thomas Strauch for the Pionic Hydrogen collaboration
2
Bonn, 04. September 2009Folie 2 Experimental program of the Pionic Hydrogen collaboration Pionic Hydrogen R-98.01 ECRIT (response function) Muonic Hydrogen Pionic Deuterium R-06.03
3
Bonn, 04. September 2009Folie 3 Exotic atoms Bohr radius:
4
Bonn, 04. September 2009Folie 4 Atomic cascade of pionic deuterium Hadronic interaction shift ε 1s - 2,5 eV width Γ 1s 1,2 eV Aim: 1s / 1s 1s / 1s 3% ~ 1% 12% ~ 4% D(3p - 1s) 3 keV Deser:
5
Bonn, 04. September 2009Folie 5 Pionic Deuterium Width Γ 1s ~ Im a πD directly related to pionproduction at threshold charge symmetry detailed-balance threshold parameter α (s-wave production)
6
Bonn, 04. September 2009Folie 6 Pion-Nucleon Interaction Isospin 1/2 or 3/2 system At threshold: two parameters: s-wave scattering lengths a 1/2 und a 3/2 choose isoscalar und isovector scattering lengths a + und a - :
7
Bonn, 04. September 2009Folie 7 Pionic Hydrogen 1s : + NLO(%) Pionic Deuterium 1s : + NLO(~LO) NLO: a - appears
8
Bonn, 04. September 2009Folie 8 N isospin scattering lengths Constraint for N isospin scattering lengths a & a – J.Gasser et al.: Hadronic atoms in QCD+QED Physics Reports 456(2008)167-251 Pionic Deuterium: bandwidth mainly by LEC f1 bandwidth mainly by LEC f1 bandwidth mainly by experiment
9
Bonn, 04. September 2009Folie 9 Experimental setup High-resolution Bragg crystal-spectrometer Bragg law:
10
Bonn, 04. September 2009Folie 10 Experimental setup spherically bent Bragg crystal bending radius ~ 3m cyclotron trap superconducting magnets cryogenic target large area detector 6 CCDs with 600x600 pixel pixelsize 40x40 µm N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419 L. M. Simons, Hyperfine Interactions 81 (1993) 253
11
Bonn, 04. September 2009Folie 11 Experimental setup Precision measurement: low background concrete shielding
12
Bonn, 04. September 2009Folie 12 Measurement ADC-spectrum Cluster analysis Hit pattern on CCD detector Hit pattern after curvature correction
13
Bonn, 04. September 2009Folie 13 high-statistics measurement of πD(3p-1s) Spectrum after cluster analysis, ADC cuts, curvature correction, projection onto x-axis rate: 30/h Measurement pressure / bar number of events 3,31500 104000 17,54800 earlier measurement without concrete with concrete
14
Bonn, 04. September 2009Folie 14 Molecular formation ( d) nl + D 2 [( dd)d]ee radiative deexcitation out of these formations would falsify the extracted shift ε 1s density dependence not seen in H, but predicted to be larger in D
15
Bonn, 04. September 2009Folie 15 Energy calibration Ga K 1 9257.67 0.066 eV K 2 9224.84 0.027 eV reflection in 3rd order Deslattes et al.: X-ray transition energies, Rev. of Mod. Phys., Vol 75, Jan 2003 reflection in 1st order
16
Bonn, 04. September 2009Folie 16 stability with Ga Kα 2 whole measure-time : 4 weeks ΔE ±2,5 meV
17
Bonn, 04. September 2009Folie 17 Results | transition energies corrections: e.g. index of refraction (3keV / 9keV) crystal bending penetration depth… pressure in bar3p-1s transition energy in eV 3.33075.509 ± 0.028 10.03075.594 ± 0.017 17.53075.599 ± 0.016 no evidence for radiative de-excitation out of molecular formations ε 1s = E exp. - E QED E QED = 3077.909±0.008 eV P.Indelicato private communication
18
Bonn, 04. September 2009Folie 18 Results | shift ε 1s dominant ±0.002 QED calculation ±0.007 pionmass
19
Bonn, 04. September 2009Folie 19 Comparison to earlier measurements
20
Bonn, 04. September 2009Folie 20 Extraction of the hadronic width from the line shape spectrometer response- function Doppler- broadening Lorentzfunction of transition
21
Bonn, 04. September 2009Folie 21 Spectrometer response function (RF) RF = Rocking curve Geometry add. Gauss Energy resolution: ΔE = 436 ± 3 meV ECRIT- measurement with He-likeAr
22
Bonn, 04. September 2009Folie 22 Doppler broadening energy release of Coulomb transitions converted into kinetic energy of the πD-atoms prediction cascade-theory, scaled from πH
23
Bonn, 04. September 2009Folie 23 Doppler broadening kinetic energy distribution: approximation by boxes prediction cascade-theory, scaled from πH
24
Bonn, 04. September 2009Folie 24 χ 2 analysis free fit one boxtwo boxes low energy box essentialno evidence for high energy contribution
25
Bonn, 04. September 2009Folie 25 Statistical studies | MC-simulations intensity input of high energy contribution: 10% : red 25% : blue probability to miss a simulated contribution
26
Bonn, 04. September 2009Folie 26 statistical error determination
27
Bonn, 04. September 2009Folie 27 Results | Width Γ 1s only one Low-energy-component identified, no high-energetic parts numerous MC-simulations to determine systematic errors
28
Bonn, 04. September 2009Folie 28 Comparison to earlier measurements
29
Bonn, 04. September 2009Folie 29 Pionic Deuterium | Final results 1s = - 2325 31 meV ( ±3% ±1,3%) 1s = 1171 meV (±12% %) + 23 - 49 + 2,1 - 4,2
30
Bonn, 04. September 2009Folie 30 threshold parameter α α = 252 μb +5 -11 χPT: expected uncertainty 30% 5% NNLO calculations
31
Bonn, 04. September 2009Folie 31 Thank you for your attention! Debrecen – Coimbra – Ioannina – Jülich – Paris – PSI – Vienna PSI experiments R-98.01 and R-06.03 D. F. Anagnostopoulos, S. Biri, D. D. S. Covita, H. Gorke, D. Gotta, A. Gruber, M. Hennebach, A. Hirtl, P. Indelicato, T. Ishiwatari, Th. Jensen, E.-O. Le Bigot, J. Marton, M. Nekipelov, J. M. F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, Th. Strauch, M. Trassinelli, J. F. C. A. Veloso, J. Zmeskal PIONIC HYDROGEN collaboration
32
Bonn, 04. September 2009Folie 32 Pionisches Deuterium Appendix
33
Bonn, 04. September 2009Folie 33 cascaden effects
34
Bonn, 04. September 2009Folie 34 Origin of shift and width
35
Bonn, 04. September 2009Folie 35 Pionic Deuterium 1s Pionproduktion an der Schwelle NN NN Ladungssymmetrie Zeitumkehr-Invarianz Pionproduktion Parametrisierung: Atom : und über optisches Theorem mit Wirkungsquerschnitt verknüpft Panofsky Rate: P d = 2.83±0.04
36
Bonn, 04. September 2009Folie 36 Elastic scattering
37
Bonn, 04. September 2009Folie 37 Experimental setup
38
Bonn, 04. September 2009Folie 38 long range stability results analysis inclination sensor data evolution of crystal temperature
39
Bonn, 04. September 2009Folie 39 corrections and error for ε 1s
40
Bonn, 04. September 2009Folie 40 Spectrometer responsefunction D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 CCD detector He-like atoms narrow X-rays, few keV high rate S H(2p-1s) Cl H(3p-1s) Ar H(4p-1s) D(3p-1s) ECRIT = cyclotron trap (4) + hexapole magnet (2) + high frquency (5) 6.4 GHz 450 W D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 D.F.Anagnostopoulos et al., Nucl. Instr. Meth. A 545 (2005) 217 Electron Cyclotron Resonance Ion Trap ( ECRIT )
41
Bonn, 04. September 2009Folie 41 Kinetic energy velocity distribution
42
Bonn, 04. September 2009Folie 42 Appendices | NN threshold parameter PT at present / 30% few % charge symmetry detailled balance V. Lensky et al., nucl-th/0511054,2005 extrapolation to threshold J. Hüfner, Phys. Rep. 21 (1975) 1 production D atom NLO LO [ b]
43
Bonn, 04. September 2009Folie 43 Formulae D U.-G. Meißner, U. Raha, A. Rusetsky, Phys. Lett.B 639 (2006) 478 + Coulomb corrections
44
Bonn, 04. September 2009Folie 44 Deser formula + Coulomb corrections from H 1s from D 1s D wave function Single + multiple scattering d
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.