Download presentation
Presentation is loading. Please wait.
Published byKatherine Leaman Modified over 10 years ago
1
DBRG - CWIMusical Feature Detection in ACOI Musical Feature Detection Anton Eliens (work in progress)
2
DBRG - CWIMusical Feature Detection in ACOI Musical Feature Detection Introduction Architecture Extraction Query facilities Validation: case study Open problems Conclusions
3
DBRG - CWIMusical Feature Detection in ACOI gathering extraction query similarity description Introduction
4
DBRG - CWIMusical Feature Detection in ACOI Out there on the Web Aria Database: title, category, voice part Midi Files on the Farm: per genre Meta Searches: AltaVista, Infoseek Lyrics search …. - Informix: Musclefish Datablade - Meldex: www.nzdl.www Keywords and categories content Btw. Why MIDI?
5
DBRG - CWIMusical Feature Detection in ACOI Architecture
6
DBRG - CWIMusical Feature Detection in ACOI Extraction - the anatomy of a midi file
7
DBRG - CWIMusical Feature Detection in ACOI detector song; to get the filename detector lyrics; extracts lyrics detector melody; extracts melody atom str name; atom str text; atom str note; midi: song; song: file lyrics melody; file: name; lyrics: text*; melody: note*; Feature grammar
8
DBRG - CWIMusical Feature Detection in ACOI int melodyDetector(tree *pt, list *tks ){ char buf[1024]; char* _result; void* q = _query; int idq = 0; idq = query_eval(q,"X:melody(X)"); while ((_result = query_result(q,idq)) ) { printf("note: \%s\n",_result); putAtom(tks,"note",_result); } return SUCCESS; } Melody detector embedded logic
9
DBRG - CWIMusical Feature Detection in ACOI V1 := newoid(); midi_song.insert(oid(V0),oid(V1)); V2 := newoid(); song_file.insert(oid(V1),oid(V2)); file_name.insert(oid(V2),"kortjakje"); song_lyrics.insert(oid(V1),oid(V2)); lyrics_text.insert(oid(V2),"e"); lyrics_text.insert(oid(V2),"per-"); lyrics_text.insert(oid(V2),"sonne"); lyrics_text.insert(oid(V2),"Moi"); lyrics_text.insert(oid(V2),"je"); lyrics_text.insert(oid(V2),"dis"); lyrics_text.insert(oid(V2),"que"); lyrics_text.insert(oid(V2),"les"); lyrics_text.insert(oid(V2),"bon-"); lyrics_text.insert(oid(V2),"bons"); lyrics_text.insert(oid(V2),"Val-"); lyrics_text.insert(oid(V2),"ent"); song_melody.insert(oid(V1),oid(V2)); melody_note.insert(oid(V2),"a-2"); melody_note.insert(oid(V2),"g-2"); melody_note.insert(oid(V2),"f-2"); melody_note.insert(oid(V2),"e-2"); melody_note.insert(oid(V2),"d-2"); melody_note.insert(oid(V2),"e-2"); melody_note.insert(oid(V2),"c-2"); Monet updates Kortjakje.mid
10
DBRG - CWIMusical Feature Detection in ACOI extraction
11
DBRG - CWIMusical Feature Detection in ACOI Query voice
12
DBRG - CWIMusical Feature Detection in ACOI Case study Kortjakje
13
DBRG - CWIMusical Feature Detection in ACOI Representation Score: Melody: c c g g a a g g f f e e d d c Song: kortjakje Composer: Who cares.
14
DBRG - CWIMusical Feature Detection in ACOI Kortjakje variations Mozart XII variations
15
DBRG - CWIMusical Feature Detection in ACOI Meldex melody transcription melody retrieval from tunes
16
DBRG - CWIMusical Feature Detection in ACOI Exact match Approx match Meldex capture transcribe retrieval Hum that Tune www.nzdl.org dynamic programming
17
DBRG - CWIMusical Feature Detection in ACOI No of notes rel. to size and alg. Search times, fixed database size
18
DBRG - CWIMusical Feature Detection in ACOI Conclusions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.