Download presentation
Presentation is loading. Please wait.
1
Diagram Definition: Revised Submission
ADTF, OMG March 2010, Washington DC Maged Elaasar, IBM
2
DD Joint Submission Team
Submitters Adaptive Deere & Company Fujitsu International Business Machines Model Driven Solutions Sparx Systems Supporters Trisotech U.S. National Institute of Standards and Technology
3
Diagram Definition Time Line
RFP Initial Submission Revised Submission Voting September 2007 February 2009 May 2010 September 2010
4
Diagram Definition RFP Requirements
Enable diagram interchange between tools of a given language Currently only the abstract syntax models can be interchanged Current DI spec provides a solution but it is not adequate because: Fixed metamodel that cannot be used to specify language-specific idioms. Mixes between what needs to be interchanged and what is fixed. Enable formal specification of the concrete graphical syntax of a language Currently graphical syntax and its mapping to the abstract syntax is specified using pictures and informal text. The lack of precision leads to confusion and ambiguity increasing cost/effort
5
Diagram Definition Submission
Enable diagram interchange between tools of a given language Provides a new abstract Diagram Interchange (DI) metamodel Defines common DI abstractions, relationships and assumptions References abstract syntax (AS) model elements Gets extended by concrete language-specific DI metamodels. Provides base for integration between various language notations Enable formal specification of the concrete graphical syntax of a language Provides a new Diagram Graphics (DG) metamodel Defines well-known graphics abstractions, primitives and idioms. Is inspired by other popular graphics standards like SVG and CSS. Proposes using a mapping language (e.g. QVT) to map language-specific DI to DG Maps elements of DI and their referenced AS elements to elements of DG Results in DG models that depict the graphical syntax of models
6
Outline DD Architecture DI Metamodel Example: UML DI Metamodel
DG Metamodel Example: QVT Mapping from UML DI to DG
7
DD Architecture DI DG MOF Mapping Language MOF M3 spec Abstract Syntax
Diagram Syntax Concrete Syntax DI M2 spec AS AS DI CS Mapping Specification DG Model Diagram Graphics M1 user CS Mapping Model (interchanged) Controller (executed) View (rendered) Instantiates Specializes References DD Spec Language Spec DI : Diagram Interchange DG: Diagram Graphics AS: Abstract Syntax CS : Concrete Syntax
8
Example : UML DD Architecture
MOF Mapping Language MOF M3 Abstract Syntax Diagram Syntax Concrete Syntax DI M2 UML UML DI UML Mapping Specification DG M1 UML Mapping Model Controller View Instantiates Specializes References DD Spec UML Spec DI : Diagram Interchange DG: Diagram Graphics
9
Diagram Common (DC) Metamodel
Defines data types that are common between DI and DG: Primitive types: Boolean, String, Integer, Real 2D Layout types: Point (x, y), Dimension (w, h), Bounds (x, y, w, h) Color types: Color (r, g, b), KnownColor (red, green, yellow…etc) Defines common geometrical assumptions: Measurement Unit: user units (logical) A mapping to inches (physical) provided as diagram resolution Coordinate System: x-y based Origin at 0,0 and Increases to right and down Negative coordinates allowed Z-Order: based on rules Owned element > owning element Sibling at higher index > sibling at lower index Rotation: in degrees Can be +ve (clockwise) or –ve
10
Diagram Interchange (DI) Metamodel
DiagramElement is the basic building block of a diagram Can reference an optional model element Can have an optional local and/or shared style Can nest other diagram elements Style is a bag of optional properties affecting the styling of diagram elements
11
Diagram Interchange (DI) Metamodel
Diagram is a container of a hierarchy of diagram elements The root of the hierarchy is of type Plane (next slide) Can own styles shared by diagram elements in the diagram DiagramCollection is a container of a collection of diagrams Can own styles shared by diagram elements across diagrams
12
Diagram Interchange (DI) Metamodel
Plane defines a 2-dimensional x-y coordinate system Owns an ordered collection of plane elements PlaneElement is the super type of elements laid out relative to their plane Owns a collection of labels Label is an attachment to a plane element Has its own optional bounds relative the plane When bounds are not specified it is positioned automatically
13
Diagram Interchange (DI) Metamodel
Shape is a plane element specified with a rectangular bounds on the plane Edge is a plane element specified with a set of points relative to the plane represents a line connecting two plane elements: a source and a target
14
Example: UML DI Metamodel
15
Example: UML DI Metamodel
16
Diagram Graphics (DG) Metamodel
GraphicalElement is the basic building block of graphics Can have a local and a share style Can be transformed with a list of transforms Can be clipped with a clip path
17
Diagram Graphics (DG) Metamodel
Many primitive graphical elements are defined Others can be defined at M1
18
Diagram Graphics (DG) Metamodel
Group is a graphical element that nests other elements as members Canvas is the top most group and defines a 2-dimentional coordinate system Owns shared elements (Fills and Markers) referenced by other elements ClipPath is a group that defines a clip path as the union of the the outlines of its members
19
Diagram Graphics (DG) Metamodel
Fill is a definition of how to fill enclosed areas of graphical elements Two types of Fill exist: Gradient and Pattern Style is a bag of optional properties affecting the styling of graphical elements
20
Diagram Graphics (DG) Metamodel
PathCommand is an instruction to manipulate the current pen in the canvas Tansform is a definition of a change to do to a graphical element
21
Example: QVT Mapping from UML DI to DG
modeltype DC uses ' modeltype DI uses ' modeltype DG uses ' modeltype UMLDI uses ' modeltype UML uses ' transformation umldi2dg(in umldi : UMLDI, out DG) { main() { umldi.objectsOfType(UMLDI::UMLPlane)->map planeToGraphicalElement(); } mapping UMLDI::UMLPlane::planeToGraphicalElement() : DG::Canvas inherits DI::DiagramElement::diagramElementToGraphicalElement member += self.planeElement->map planeElementToGraphicalElement(); … UMLPlane PlaneElement UMLDI DG Canvas Group
22
Example: QVT Mapping from UML DI to DG
mapping DI::PlaneElement::planeElementToGraphicalElement() : DG::Group { init { result := switch { case (self.oclIsKindOf(UMLDI::UMLShape)) self.oclAsType(UMLDI::UMLShape).map shapeToGraphicalElement(); case (self.oclIsKindOf(UMLDI::UMLEdge)) self.oclAsType(UMLDI::UMLEdge).map edgeToGraphicalElement(); }; } mapping UMLDI::UMLShape::shapeToGraphicalElement() : DG::Group inherits DI::DiagramElement::diagramElementToGraphicalElement { member += self.umlElement.map shapeToGraphicalElement(self); member += self.label.map labelToGraphicalElement(); member += self.compartment->map compartmentToGraphicalElement(); mapping UMLDI::UMLEdge::edgeToGraphicalElement() : DG::Group member += self.umlElement.map edgeToPolyline(self); UML::Element UMLShape UMLEdge UMLLabel UMLLabel UMLCompartment UMLDI DG Group Group GraphicalElement Polyline Text Text Group
23
Example: QVT Mapping from UML DI to DG
UMLCompartment mapping UMLDI::UMLCompartment::compartmentToGraphicalElement() : DG::Group inherits DI::DiagramElement::diagramElementToGraphicalElement { member := object DG::Rectangle { bounds := newBounds(self.bounds) }; member += self.label.map labelToGraphicalElement(); member += self.planeElement->map planeElementToGraphicalElement(); } mapping UMLDI::UMLLabel::labelToGraphicalElement() : DG::Text bounds := newBounds(self.bounds); switch { case (self.kind = UMLDI::UMLLabelKind::name) {var diagramElement = self.owningElement.oclAsType(UMLDI::UMLDiagramElement); data := diagramElement.umlElement.oclAsType(UML::NamedElement).name(diagramElement);} case (self.kind = UMLDI::UMLLabelKind::sourceRole) data := association.memberEnd->at(1).role(); case (self.kind = UMLDI::UMLLabelKind::targetRole) data := self.owningElement.modelElement.oclAsType(UML::Association).memberEnd->at(2).role(); case (self.kind = UMLDI::UMLLabelKind::sourceMultiplicity) data := self.owningElement.modelElement.oclAsType(UML::Association).memberEnd->at(1).multiplicity(); case (self.kind = UMLDI::UMLLabelKind::targetMultiplicity) data := self.owningElement.modelElement.oclAsType(UML::Association).memberEnd->at(2).multiplicity(); case (self.kind = UMLDI::UMLLabelKind::title) data := self.owningElement.oclAsType(UMLDI::UMLCompartment).title(); }; UMLLabel PlaneElement UMLDI DG Group Rectangle Text Group
24
Example: QVT Mapping from UML DI to DG
abstract mapping DI::DiagramElement::diagramElementToGraphicalElement() : DG::GraphicalElement { var s : DG::Style; if self.localStyle->notEmpty() and self.localStyle.oclIsKindOf(UMLDI::UMLStyle) then s := object DG::Style { if not localStyle.oclIsSet(fontName) then fontName := ds.fontName endif; if not localStyle.oclIsSet(fontSize) then fontSize := ds.fontSize endif; } endif; if self.sharedStyle->notEmpty() and self.sharedStyle.oclIsKindOf(UMLDI::UMLStyle) then localStyle := s;
25
Example: QVT Mapping from UML DI to DG
mapping UML::Element::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement { init {} } mapping UML::Classifier::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement { init { result := object DG::Rectangle { bounds := newBounds(shape.bounds) }; mapping UML::Property::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement { result := object DG::Text { bounds := newBounds(shape.bounds); data := self.name(shape); alignment = DC::AlignmentKind::start }; mapping UML::Operation::shapeToGraphicalElement(shape:UMLDI::UMLShape) : DG::GraphicalElement {
26
Example: QVT Mapping from UML DI to DG
property interfaceRealizationStyle = object DG::Style { strokeDashLength := Sequence {2, 2}; }; property interfaceRealizationMarker = object DG::Marker { size := object DC::Dimension {width := 10; height := 10}; reference := object DC::Point {x := 10; y := 5}; member += object DG::Path { command += object DG::MoveTo {point := object DC::Point{ x:=0; y:=0 } }; command += object DG::LineTo {point := object DC::Point{ x:=10; y:=5 } }; command += object DG::LineTo {point := object DC::Point{ x:=0; y:=10 } }; mapping UMLDI::UMLPlane::planeToGraphicalElement() : DG::Canvas inherits DI::DiagramElement::diagramElementToGraphicalElement { …. marker += interfaceRealizationMarker; style += interfaceRealizationStyle; } mapping UML::Element::edgeToPolyline(edge:UMLDI::UMLEdge) : DG::Polyline { point := edge.waypoint->collect(p|newPoint(p)); mapping UML::InterfaceRealization::edgeToPolyline(edge:UMLDI::UMLEdge) : DG::Polyline inherits UML::Element::edgeToPolyline { sharedStyle := interfaceRealizationStyle; endMarker := interfaceRealizationMarker; 0,0 10,10
27
Example: QVT Mapping from UML DI to DG
query UML::NamedElement::name(de : UMLDI::UMLDiagramElement) : String { return self.name(de.isQualifiedName) } query UML::NamedElement::name(qualified : Boolean) : String { return if qualified then self.qualifiedName else self.name endif query UML::NamedElement::visibility() : String { return switch { case (self.visibility = UML::VisibilityKind::public) '+'; case (self.visibility = UML::VisibilityKind::private) '-'; case (self.visibility = UML::VisibilityKind::private) '#'; else ‘'; query UML::TypedElement::type(qualified : Boolean) : String { return if self.type->notEmpty() then ' : ' + self.type.name(qualified) else '' endif query UML::Property::name(de : UMLDI::UMLDiagramElement) : String { return self.visibility() + self.derived_() + self.name(de.isQualifiedName) + self.type(de.isQualifiedName) query UML::Property::derived_() : String { return if self.isDerived then '/' else '' endif query UML::Property::multiplicity() : String { return '[' + self.lower.toString() + '..' + self.upper.toString() + ']' query UML::Property::role() : String { return self.visibility() + self.derived_() +self.name(false) query UML::Operation::name(de : UMLDI::UMLDiagramElement) : String { return self.visibility() + self.name(de.isQualifiedName) + '()' + self.type(de.isQualifiedName)
28
Example: QVT Mapping from UML DI to DG
helper newPoint(p : DC::Point) : DC::Point { return p.clone().oclAsType(DC::Point) } helper newBounds(b : DC::Bounds) : DC::Bounds { return b.clone().oclAsType(DC::Bounds) helper newColor(c : Color) : DC::Color { return c.clone().oclAsType(DC::Color) helper rgbColor(r : Integer, g : Integer, b : Integer) : DC::Color { return object DC::Color { red := r; green := g; blue := b; } helper knownColor(color : DC::KnownColor) : DC::Color { return switch { case (color = KnownColor::maroon) rgbColor(128, 0, 0); case (color = KnownColor::red) rgbColor(255, 0, 0); case (color = KnownColor::orange) rgbColor(255, 165, 0); case (color = KnownColor::yellow) rgbColor(255, 255, 0); case (color = KnownColor::olive) rgbColor(128, 128, 0); case (color = KnownColor::purple) rgbColor(128, 0, 128); case (color = KnownColor::fuchsia) rgbColor(255, 0, 255); case (color = KnownColor::white) rgbColor(255, 255, 255); case (color = KnownColor::lime) rgbColor(0, 255, 0); case (color = KnownColor::green) rgbColor(0, 128, 0); case (color = KnownColor::navy) rgbColor(0, 0, 128); case (color = KnownColor::blue) rgbColor(0, 0, 255); case (color = KnownColor::aqua) rgbColor(0, 255, 255); case (color = KnownColor::teal) rgbColor(0, 128, 128); case (color = KnownColor::silver) rgbColor(192, 192, 192); case (color = KnownColor::gray) rgbColor(128, 128, 128); case (color = KnownColor::black) rgbColor(0, 0, 0); }; }
29
Circularity Issue QVT is mapping from a MOF model to a MOF model
MOF abstract syntax models are normally specified using UML diagrams (even if they are represented in XMI for interchange). To avoid circularity, the UML notation subset used specifically for specifying MOF abstract syntax models must be defined independently of DD. As with other MOF core circularity concerns, this is really a MOF issue, not a DD issue.
30
FTF Planned Activities
Fix issues with the Revised Submission Define in Annex A a more elaborate example (subset of UML) Define in Annex B a M2T mapping from DG to SVG Implement a reference implementation for this mapping
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.