Download presentation
Presentation is loading. Please wait.
Published byShirley Vance Modified over 10 years ago
1
Ismétlés
2
General model of quantum algorithms InitializationParallelization Amplitude ampl. Measu- rement Classical input Classical output Quantum output Quantum input
3
A Deutsch-Józsa algoritmus
4
Deutsch-Józsa-algoritmus
5
Quantum Fourier Transform
6
Classical Quantum Classical Discrete Fourier Transform (DFT) Quantum Discrete Fourier Transform (QFT)
7
How to implement QFT 3 Copyright © 2005 John Wiley & Sons Ltd.
8
How to implement QFT 6 Remarks –Complexity: –QFT is not for computing Fourier coefficients in a faster way since they are represented by probability amplitudes!
9
Kérjük kedves utasainkat ellenőrizzék az Önök előtti ülés háttámlájában található biztonsági útmutatót. A mentőmellények a székek alatt találhatók, a vészkijárat jobb hátul. Kérjük csatolják be biztonsági öveiket és fejezzék be a dohányzást! Felszállunk.
10
Quantum Phase Estimation
11
The problem Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio:
12
Idealistic case – back to the QFT
17
Quantum Phase Estimator How to initialize ?
18
Practical case IQFT will work not correctly
19
Prob. amplitudes
20
Error analysis
22
Quantum Phase Estimator
23
Error analysis
25
The RSA algorithm
29
Order finding – Shor algorithm
30
Connection between factoring and order finding
31
Prime factorization
36
The Shor Algoritm Ki, hogy csinálná??????
37
General model of quantum algorithms InitializationParallelization Amplitude ampl. Measu- rement Classical input Classical output Quantum output Quantum input
42
From quregister to tensor product of qubits Phase estimator: Shor: Connection between them:
43
Uniformly distributed eigenvectors by means of initialization of the lower quregister:
46
Using Shor’s order finding algorithm to break RSA
51
QFT as a generalized Hadamard Transform Hadamard: QFT:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.