Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electric Fields in Matter

Similar presentations


Presentation on theme: "Electric Fields in Matter"— Presentation transcript:

1 Electric Fields in Matter
Polarization Field of a polarized object Electric displacement Linear dielectrics Dr. Champak B. Das (BITS, Pilani)

2 Dr. Champak B. Das (BITS, Pilani)
Conductors Matter Insulators/Dielectrics All charges are attached to specific atoms/molecules and can only have a restricted motion WITHIN the atom/molecule. Dr. Champak B. Das (BITS, Pilani)

3 Dr. Champak B. Das (BITS, Pilani)
A simplified model of a neutral atom electron cloud nucleus The positively charged nucleus is surrounded by a spherical electron cloud with equal and opposite charge. Dr. Champak B. Das (BITS, Pilani)

4 Dr. Champak B. Das (BITS, Pilani)
When the atom is placed in an external electric field (E) E The electron cloud gets displaced in a direction (w.r.t. the nucleus) opposite to that of the applied electric field. Dr. Champak B. Das (BITS, Pilani)

5 Dr. Champak B. Das (BITS, Pilani)
If E is large enough ► the atom gets pulled apart completely => the atom gets IONIZED For less extreme fields ► an equilibrium is established => the atom gets POLARIZED Dr. Champak B. Das (BITS, Pilani)

6 Dr. Champak B. Das (BITS, Pilani)
-e +e ► The net effect is that each atom becomes a small charge dipole which affects the total electric field both inside and outside the material. Dr. Champak B. Das (BITS, Pilani)

7 Dr. Champak B. Das (BITS, Pilani)
Induced Dipole Moment: (pointing along E) Atomic Polarizability Dr. Champak B. Das (BITS, Pilani)

8 Dr. Champak B. Das (BITS, Pilani)
To calculate  : (in a simplified model) The model: an atom consists of a point charge (+q) surrounded by a uniformly charged spherical cloud of charge (-q). -q E d +q +q a -q At equilibrium, ( produced by the negative charge cloud) Dr. Champak B. Das (BITS, Pilani)

9 Dr. Champak B. Das (BITS, Pilani)
At distance d from centre, (where v is the volume of the atom) Dr. Champak B. Das (BITS, Pilani)

10 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.4: A point charge q is situated a large distance r from a neutral atom of polarizability . Find the force of attraction between them. Force on q : Dr. Champak B. Das (BITS, Pilani)

11 Dr. Champak B. Das (BITS, Pilani)
Alignment of Polar Molecules: Polar molecules: molecules having permanent dipole moment when put in a uniform external field: Dr. Champak B. Das (BITS, Pilani)

12 Dr. Champak B. Das (BITS, Pilani)
Alignment of Polar Molecules: when put in a non-uniform external field: +q F+ d F- -q Dr. Champak B. Das (BITS, Pilani)

13 Dr. Champak B. Das (BITS, Pilani)
F+ -q +q E+ E- F- Dr. Champak B. Das (BITS, Pilani)

14 Dr. Champak B. Das (BITS, Pilani)
For perfect dipole of infinitesimal length, the torque about the centre : the torque about any other point: Dr. Champak B. Das (BITS, Pilani)

15 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.9: A dipole p is a distance r from a point charge q, and oriented so that p makes an angle  with the vector r from q to p. (i) What is the force on p? (ii) What is the force on q? Dr. Champak B. Das (BITS, Pilani)

16 Polarization: When a dielectric material is put in an external field:
Induced dipoles (for non-polar constituents) Aligned dipoles (for polar constituents) A lot of tiny dipoles pointing along the direction of the field Dr. Champak B. Das (BITS, Pilani)

17 P  dipole moment per unit volume
Material becomes POLARIZED A measure of this effect is POLARIZATION defined as: P  dipole moment per unit volume Dr. Champak B. Das (BITS, Pilani)

18 The Field of a Polarized Object
= sum of the fields produced by infinitesimal dipoles rs p r r Dr. Champak B. Das (BITS, Pilani)

19 Dr. Champak B. Das (BITS, Pilani)
rs p r r Total potential : Dr. Champak B. Das (BITS, Pilani)

20 Dr. Champak B. Das (BITS, Pilani)
Prove it ! Dr. Champak B. Das (BITS, Pilani)

21 Dr. Champak B. Das (BITS, Pilani)
Using Divergence theorem; Dr. Champak B. Das (BITS, Pilani)

22 Dr. Champak B. Das (BITS, Pilani)
Defining: Surface Bound Charge Volume Bound Charge Dr. Champak B. Das (BITS, Pilani)

23 Potential due to a surface charge density b
& a volume charge density b Dr. Champak B. Das (BITS, Pilani)

24 = + Field/Potential of a polarized object
Field/Potential produced by a surface bound charge b + Field/Potential produced by a volume bound charge b Dr. Champak B. Das (BITS, Pilani)

25 Physical Interpretation of Bound Charges
…… are not only mathematical entities devised for calculation; but represent perfectly genuine accumulations of charge ! Dr. Champak B. Das (BITS, Pilani)

26 BOUND (POLARIZATION) CHARGE DENSITIES
Consequence of an external applied field ►Accumulation of b and b Dr. Champak B. Das (BITS, Pilani)

27 Dr. Champak B. Das (BITS, Pilani)
E  ( n : number of atoms per unit volume ) Dr. Champak B. Das (BITS, Pilani)

28 Dr. Champak B. Das (BITS, Pilani)
E  Net transfer of charge across A : Dr. Champak B. Das (BITS, Pilani)

29 Dr. Champak B. Das (BITS, Pilani)
Net charge transfer per unit area : P is measure of the charge crossing unit area held normal to P when the dielectric gets polarized. Dr. Champak B. Das (BITS, Pilani)

30 Dr. Champak B. Das (BITS, Pilani)
When P is uniform : P  M N Q   Q E  … net charge entering the volume is ZERO Dr. Champak B. Das (BITS, Pilani)

31 Dr. Champak B. Das (BITS, Pilani)
Volume bound charge P A Net transfer of charge across A : Dr. Champak B. Das (BITS, Pilani)

32 Dr. Champak B. Das (BITS, Pilani)
Surface bound charge P  E  N M G Net accumulated charge between M & N : Dr. Champak B. Das (BITS, Pilani)

33 Field of a uniformly polarized sphere
Choose: z-axis || P z P R P is uniform Dr. Champak B. Das (BITS, Pilani)

34 Potential of a uniformly polarized sphere: (Prob. 4.12)
Potential of a polarized sphere at a field point ( r ): P is uniform P is constant in each volume element Dr. Champak B. Das (BITS, Pilani)

35 Electric field of a uniformly charged sphere Esphere
Dr. Champak B. Das (BITS, Pilani)

36 At a point inside the sphere ( r < R )
Dr. Champak B. Das (BITS, Pilani)

37 Dr. Champak B. Das (BITS, Pilani)
Field lines inside the sphere : P ( Inside the sphere the field is uniform ) Dr. Champak B. Das (BITS, Pilani)

38 At a point outside the sphere ( r > R )
Dr. Champak B. Das (BITS, Pilani)

39 Total dipole moment of the sphere:
(potential due to a dipole at the origin) Dr. Champak B. Das (BITS, Pilani)

40 Dr. Champak B. Das (BITS, Pilani)
Field lines outside the sphere : P Dr. Champak B. Das (BITS, Pilani)

41 Dr. Champak B. Das (BITS, Pilani)
Field lines of a uniformly polarized sphere : Dr. Champak B. Das (BITS, Pilani)

42 Uniformly polarized sphere – A physical analysis
Without polarization: Two spheres of opposite charge, superimposed and canceling each other With polarization: The centers get separated, with the positive sphere moving slightly upward and the negative sphere slightly downward Dr. Champak B. Das (BITS, Pilani)

43 Bound Surface Charge b
At the top a cap of LEFTOVER positive charge and at the bottom a cap of negative charge + + + - d Bound Surface Charge b Dr. Champak B. Das (BITS, Pilani)

44 Dr. Champak B. Das (BITS, Pilani)
Recall: Pr. 2.18 Two spheres , each of radius R, overlap partially. + - _ + d _ + Dr. Champak B. Das (BITS, Pilani)

45 Electric field in the region of overlap between the two spheres
+ + + - d For an outside point: Dr. Champak B. Das (BITS, Pilani)

46 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.10: A sphere of radius R carries a polarization where k is a constant and r is the vector from the center. (i) Calculate the bound charges b and b. (ii) Find the field inside and outside the sphere. Dr. Champak B. Das (BITS, Pilani)

47 The Electric Displacement
Polarization Accumulation of Bound charges Total field = Field due to bound charges + field due to free charges Dr. Champak B. Das (BITS, Pilani)

48 Gauss’ Law in the presence of dielectrics
Within the dielectric the total charge density: free charge bound charge caused by polarization NOT a result of polarization Dr. Champak B. Das (BITS, Pilani)

49 Gauss’ Law Defining Electric Displacement ( D ) :
( Differential form ) ( Integral form ) Dr. Champak B. Das (BITS, Pilani)

50 Dr. Champak B. Das (BITS, Pilani)
D & E : … “looks similar” apart from the factor of 0 ( ! ) …….but : Dr. Champak B. Das (BITS, Pilani)

51 Dr. Champak B. Das (BITS, Pilani)
D & E :  Field = - Gradient of a Scalar Potential  No Potential for Displacement Dr. Champak B. Das (BITS, Pilani)

52 Dr. Champak B. Das (BITS, Pilani)
Boundary Conditions: On normal components: On tangential components: Dr. Champak B. Das (BITS, Pilani)

53 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.15: A thick spherical shell is made of dielectric material with a “frozen-in” polarization where k is a constant and r is the distance from the center. There is no free charge. a b Find E in three regions by two methods: Dr. Champak B. Das (BITS, Pilani)

54 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.15: (contd.) (a) Locate all the bound charges and use Gauss’ law. For r < a : For r > b: For a < r < b: Answer: a b Dr. Champak B. Das (BITS, Pilani)

55 Dr. Champak B. Das (BITS, Pilani)
Prob. 4.15: (contd.) (b) Find D and then get E from it. Answer: a b Dr. Champak B. Das (BITS, Pilani)

56 The Equations of Electrostatics Inside Dielectrics
or with Dr. Champak B. Das (BITS, Pilani)

57 Linear Dielectrics Recall: Cause of polarization is an Electric field
For some material (if E is not TOO strong) Electric susceptibility of the medium Total field due to (bound + free) charges Dr. Champak B. Das (BITS, Pilani)

58 Permittivity of the material
In such dielectrics; Permittivity of the material The dimensionless quantity: Relative permittivity or Dielectric constant of the material Dr. Champak B. Das (BITS, Pilani)

59 Electric Constitutive Relations
and / or Represent the behavior of materials Dr. Champak B. Das (BITS, Pilani)

60 Dr. Champak B. Das (BITS, Pilani)
In a dielectric material, if e is independent of : Location ► Homogeneous ► Linear Magnitude of E ► Isotropic Direction of E Most liquids and gases are homogeneous, isotropic and linear dielectrics at least at low electric fields. Dr. Champak B. Das (BITS, Pilani)

61 Generally, even in linear(& isotropic) dielectrics :
But in a homogeneous linear dielectric : Dr. Champak B. Das (BITS, Pilani)

62 Dr. Champak B. Das (BITS, Pilani)
Free charges  D , as: In LD : When the medium is filled with a homogeneous linear dielectric, the field is reduced by a factor of 1/r . Dr. Champak B. Das (BITS, Pilani)

63 Dr. Champak B. Das (BITS, Pilani)
Capacitor filled with insulating material of dielectric constant r : Dr. Champak B. Das (BITS, Pilani)

64 Dr. Champak B. Das (BITS, Pilani)
So far……… …source charge distribution at rest ELECTROSTATICS 1st/4 Maxwell’s Equations Dr. Champak B. Das (BITS, Pilani)

65 Dr. Champak B. Das (BITS, Pilani)
Coming Up….. …source charge distribution at motion MAGNETOSTATICS ELECTROMAGNETISM A New Instructor Dr. Champak B. Das (BITS, Pilani)


Download ppt "Electric Fields in Matter"

Similar presentations


Ads by Google