Download presentation
Presentation is loading. Please wait.
Published byChase Willis Modified over 11 years ago
1
Assembler Exercises Chapters 4-6 Dr. Gheith Abandah1
2
Exercise 1 z = x + y; Dr. Gheith Abandah2
3
Exercise 1 movf x, 0 addwf y, 0 movwf z Dr. Gheith Abandah3
4
Exercise 2 z = x + y;//16-bit numbers Dr. Gheith Abandah4
5
Exercise 2 movf x_lo, 0 addwf y_lo, 0 movwf z_lo btfsc status, C incf x_hi, 1 movf x_hi, 0 addwf y_hi, 0 movwf z_hi Dr. Gheith Abandah5
6
Exercise 3 sum = 0; for (i=0; i<10; i++) sum += A[i]; Dr. Gheith Abandah6
7
Exercise 3 A equ20 movlw 0a movwf counter movlw A movwf fsr clrw Loopaddwf indf,0 incf fsr decfsz counter goto Loop movwf sum Dr. Gheith Abandah7
8
Assignment Study Section 5.9: The ping-pong program Dr. Gheith Abandah8
9
Exercise 4 z = (x + y) - q; Dr. Gheith Abandah9
10
Exercise 4 movf x, 0 addwf y, 0 movwf z movf q, 0 subwf z, 1 Dr. Gheith Abandah10
11
Exercise 5 z = x-3; Dr. Gheith Abandah11
12
Exercise 5 movlw 3 subwf x, 0 movwf z Dr. Gheith Abandah12
13
Exercise 6 z = x<<3; Dr. Gheith Abandah13
14
Exercise 6 bcf status, C rlf x, 1 bcf status, C rlf x, 1 bcf status, C rlf x, 0 movwf z Dr. Gheith Abandah14
15
Exercise 7 z = x && 0x0f; Dr. Gheith Abandah15
16
Exercise 7 movlw 0f andwf x, 0 movwf z Dr. Gheith Abandah16
17
Exercise 8 z = x * 4; Dr. Gheith Abandah17
18
Exercise 8 bcf status, C rlf x, 1 bcf status, C rlf x, 0 movwf z Dr. Gheith Abandah18
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.