Download presentation
Presentation is loading. Please wait.
Published byMariana Hinds Modified over 10 years ago
1
Nanophotonics Class 5 Rare earth and quantum dot emitters
2
HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions
3
Energy levels of lanthanide ions 1.5 µm E gap (Si)
4
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
5
Europium protects the euro J.F. Suyver, A. Meijerink (UU )
6
Lanthanide bar codes Dejneka, PNAS 100, (2003)
8
HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions
9
Chemistry (outer-shell behavior) is similar A. Polman et al., Appl. Phys. Lett. 62, 507 (1993), J.S. Custer et al., J. Appl. Phys. 75, 2809 (1994) ErbiumPrasaeodymium
10
Silica optical fiber transmission spectrum 10 12 Hz 1.3 m 1.55 m Miya et al., Electron. Lett. 15, 108 (1979) wavelength vs. time division multiplexing: WDM
11
Erbium transition at 1.5 m
12
Er absorption and emission cross sections absorption emission G.N. van den Hoven et al. Appl. Opt. 36, 3338 (1997)
13
Erbium photoluminescence in various silicate glasses W tot =W rad +C Er-Er [Er] [OH ] A. Polman, J. Appl. Phys. 82, 1 (1997)
14
EXAFS Local structure around Er in silicate glasses M.A. Marcus et al., J. of Non-Cryst. Solids 136, 260 (1991)
15
Planar optical waveguide Si high index low index Waveguide core materials: silica glass Al 2 O 3, Si 3 N 4, …. polymer silicon
16
Photonic integrated circuits on silicon 1 mm SiO 2 /Al 2 O 3 /SiO 2 /Si Al 2 O 3 technology by M.K. Smit et al., TUD
17
The world’s smallest erbium-doped optical amplifier 1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB Waveguide spiral size: 1 mm 2 minimum bending radius > 50 m Appl. Phys. Lett. 68, 1886 (1996)
18
From a FOM prototype to a 40 M$ company … Symmorphix Sunnyvale CA, USA
19
1.5 µm microcavity mode imaged through green upconversion 2 MeV Er implantation, 0.35 at.%, + 800 °C anneal T.J. Kippenberg et al.
20
Quantum dot emitters
21
Indirect bandstructure Silicon is an inefficient light emitter
22
Si:Er light-emitting diode G. Franzó et al., Appl. Phys. Lett. 64, 2235 (1994), B. Zheng et al., Appl. Phys. Lett. 64, 2842 (1994) Er, O doped c-Si
23
5 m SiO 2 165 keV Si, 1.7 10 17 cm -2 anneal: 1100 C nanocrystals: 3-5 nm Silicon quantum dots: particles in a box
24
X-ray Photo-electron spectroscopy
25
Luminescence spectrum depends on Si concentration red-shift for larger nanocrystal size 50 keV Si, 1100 o C/10 min, 500 eV D, 3 10 15 cm -2 E = 300-340 meV Bulk Si bandgap 1100 nm
26
Si + O 2 Si + SiO 2 Shrinking Si quantum dots by oxidation: blue shift E = 300-400 meV
27
5 nm PbS: rock-salt structure Nearly spherical shape, crystal facets Compound semiconductor quantum dots: PbS Modified slide from D. Vanmaekelbergh
28
CdSe: wurtzite Modified slide from D. Vanmaekelbergh Compound semiconductor quantum dots: CdSe
29
Modified slide from D. Vanmaekelbergh Luminescence from compound semiconductor quantum dots
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.