Download presentation
Presentation is loading. Please wait.
Published byCesar Neaves Modified over 10 years ago
1
Nanophotonics Week 8 November 16, 2007 Rare earth and quantum dot emitters
2
HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions
3
Energy levels of lanthanide ions 1.5 µm E gap (Si)
5
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
6
Europium protects the euro J.F. Suyver, A. Meijerink (UU )
7
Lanthanide bar codes Dejneka, PNAS 100, (2003)
9
HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions
10
Chemistry (outer-shell behavior) is similar A. Polman et al., Appl. Phys. Lett. 62, 507 (1993), J.S. Custer et al., J. Appl. Phys. 75, 2809 (1994) ErbiumPrasaeodymium
11
Silica optical fiber transmission spectrum 10 12 Hz 1.3 m 1.55 m Miya et al., Electron. Lett. 15, 108 (1979) wavelength vs. time division multiplexing: WDM
12
Erbium transition at 1.5 m
13
Er absorption and emission cross sections absorption emission G.N. van den Hoven et al. Appl. Opt. 36, 3338 (1997)
14
Erbium photoluminescence in various silicate glasses W tot =W rad +C Er-Er [Er] [OH ] A. Polman, J. Appl. Phys. 82, 1 (1997)
15
EXAFS Local structure around Er in silicate glasses M.A. Marcus et al., J. of Non-Cryst. Solids 136, 260 (1991)
16
Planar optical waveguide Si high index low index Waveguide core materials: silica glass Al 2 O 3, Si 3 N 4, …. polymer silicon
17
Photonic integrated circuits on silicon 1 mm SiO 2 /Al 2 O 3 /SiO 2 /Si Al 2 O 3 technology by M.K. Smit et al., TUD
18
The world’s smallest erbium-doped optical amplifier 1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB Waveguide spiral size: 1 mm 2 minimum bending radius > 50 m Appl. Phys. Lett. 68, 1886 (1996)
19
From a FOM prototype to a 40 M$ company … Symmorphix Sunnyvale CA, USA
20
1.5 µm microcavity mode imaged through green upconversion 2 MeV Er implantation, 0.35 at.%, + 800 °C anneal T.J. Kippenberg et al.
21
Nanophotonics Week 8 November 16, 2007 Rare earth and quantum dot emitters
22
Indirect bandstructure Silicon is an inefficient light emitter
23
Si:Er light-emitting diode G. Franzó et al., Appl. Phys. Lett. 64, 2235 (1994), B. Zheng et al., Appl. Phys. Lett. 64, 2842 (1994) Er, O doped c-Si
24
5 m SiO 2 165 keV Si, 1.7 10 17 cm -2 anneal: 1100 C nanocrystals: 3-5 nm Silicon quantum dots: particles in a box
25
X-ray Photo-electron spectroscopy
26
Luminescence spectrum depends on Si concentration red-shift for larger nanocrystal size 50 keV Si, 1100 o C/10 min, 500 eV D, 3 10 15 cm -2 E = 300-340 meV Bulk Si bandgap 1100 nm
27
Si + O 2 Si + SiO 2 Shrinking Si quantum dots by oxidation: blue shift E = 300-400 meV
28
5 nm PbS: rock-salt structure Nearly spherical shape, crystal facets Compound semiconductor quantum dots: PbS Modified slide from D. Vanmaekelbergh
29
CdSe: wurtzite Modified slide from D. Vanmaekelbergh Compound semiconductor quantum dots: CdSe
30
Modified slide from D. Vanmaekelbergh Luminescence from compound semiconductor quantum dots
31
Class topics 1. Resonances and refractive index 2. Nanoparticle scattering 3. Surface plasmon polaritons 4. Ornstein Laboratory excursion 5. Photonic crystals 6. AMOLF lab tour 7. Local density of optical states 8. Rare earth ions and quantum dots 9. Microresonators 10. Philips excursion 11. NANONED Conference 12. Near field optics 13. Metamaterials 14. p.m. 15. Nanophotonics Student Symposium
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.