Presentation is loading. Please wait.

Presentation is loading. Please wait.

ENERGY, THERMODYNAMICS and ENZYMES

Similar presentations


Presentation on theme: "ENERGY, THERMODYNAMICS and ENZYMES"— Presentation transcript:

1 ENERGY, THERMODYNAMICS and ENZYMES
© 2012 Pearson Education, Inc. 1

2 5.10 Cells transform energy as they perform work
All organisms require nutrients = raw building blocks Most common elements: C, H, O, N, P, S These materials are acquired by living organisms, broken down, recycled, and built back up again into new organic compounds as needed All organisms require energy for basic life functions – any characteristic to define life ultimately requires energy!! Student Misconceptions and Concerns Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face (unless it is digital!). Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions in their lives. 2. Some students can relate well to the concept of entropy as applied to the room where they live. Despite their cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 3. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heaters” work very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 4. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30C (86F) outside if their core body temperature is 37C (98.6F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need to maintain a core body temperature around 37C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration. © 2012 Pearson Education, Inc. 2

3 5.10 Cells transform energy as they perform work
All organisms require energy for basic life functions – any characteristic to define life ultimately requires energy!! Energy = capacity to cause change or to perform work. Two kinds of energy: Kinetic energy is the energy of motion. Potential energy is energy that matter possesses as a result of its location or structure. Heat = thermal energy Free energy = portion of energy available to do work, Chemical energy = potential energy available in bonds within molecules and released in a chemical reaction. Most relevant energy to living organisms Student Misconceptions and Concerns Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face (unless it is digital!). Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions in their lives. 2. Some students can relate well to the concept of entropy as applied to the room where they live. Despite their cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 3. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heaters” work very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 4. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30C (86F) outside if their core body temperature is 37C (98.6F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need to maintain a core body temperature around 37C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration. © 2012 Pearson Education, Inc. 3

4 Kinetic energy of movement
Figure 5.10 Fuel Energy conversion Waste products Heat energy Carbon dioxide Gasoline Combustion Kinetic energy of movement Oxygen Water Energy conversion in a car Heat energy Figure 5.10 Energy transformations in a car and a cell Cellular respiration Glucose Carbon dioxide ATP ATP Oxygen Energy for cellular work Water Energy conversion in a cell 4

5 Thermodynamics = study of energy transformations
First law of thermodynamics = energy in the universe is constant Implication: Biological organisms cannot produce energy - only convert forms of energy Ultimate source of energy for all ecosystems = sun (solar energy) Second law of thermodynamics = energy conversions increase the disorder (entropy) of the universe. No energy transformations are 100 % efficient With every energy transformation some sable energy lost as heat Energy transformations are one-way street Biological organisms require constant supply of energy to maintain order!! Student Misconceptions and Concerns Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face (unless it is digital!). Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions in their lives. 2. Some students can relate well to the concept of entropy as applied to the room where they live. Despite their cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 3. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heaters” work very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 4. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30C (86F) outside if their core body temperature is 37C (98.6F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need to maintain a core body temperature around 37C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration. © 2012 Pearson Education, Inc. 5

6 Metabolism = total of an organism’s chemical reactions
Two general types of metabolic processes: Synthetic (anabolic) Photosynthesis Convert solar to chemical energy Dehydration reactions Convert nutrients to biomolecules Decomposition (catabolic) Cellular respiration Release free energy in organic compounds Hydrolysis Release energy Student Misconceptions and Concerns Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face (unless it is digital!). Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions in their lives. 2. Some students can relate well to the concept of entropy as applied to the room where they live. Despite their cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 3. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heaters” work very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 4. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30C (86F) outside if their core body temperature is 37C (98.6F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need to maintain a core body temperature around 37C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration. © 2012 Pearson Education, Inc. 6

7 Spontaneous chemical reactions are exergonic
Chemical reactions are either Exergonic reactions release energy. These reactions release the energy in covalent bonds of the reactants. Cellular respiration An endergonic reaction requires an input of energy; products contain more chemical/potential energy Photosynthesis Energy coupling = energy released from exergonic reactions drive endergonic reactions!! Student Misconceptions and Concerns Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face (unless it is digital!). Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions in their lives. 2. Some students can relate well to the concept of entropy as applied to the room where they live. Despite their cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 3. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heaters” work very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 4. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30C (86F) outside if their core body temperature is 37C (98.6F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need to maintain a core body temperature around 37C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration. © 2012 Pearson Education, Inc. 7

8 Amount of energy released
Figure 5.11A Reactants Amount of energy released Potential energy of molecules Energy Products Figure 5.11A Exergonic reaction, energy released 8

9 Amount of energy required
Figure 5.11B Products Amount of energy required Potential energy of molecules Energy Reactants Figure 5.11B Endergonic reaction, energy required 9

10 Cells need energy to perform work!!
There are three main types of cellular work: chemical mechanical transport ATP drives all three of these types of work. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0 to 100C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0 to 100C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider asking your students to think of the terms as A-3-P and A-2-P, noting that the word roots tri = 3 and di = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population). © 2012 Pearson Education, Inc. 10

11 ATP = Adenosine triphosphate
Phosphate group P P P Adenine Ribose Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0 to 100C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0 to 100C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider asking your students to think of the terms as A-3-P and A-2-P, noting that the word roots tri = 3 and di = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population). © 2012 Pearson Education, Inc. 11

12 ATP: Adenosine Triphosphate Phosphate group P P P Adenine Ribose H2O
Figure 5.12A_s2 ATP: Adenosine Triphosphate Phosphate group P P P Adenine Ribose H2O Hydrolysis Figure 5.12A_s2 The structure and hydrolysis of ATP (step 2) P P P Energy ADP: Adenosine Diphosphate 12

13 ATP drives cellular work
Hydrolysis of ATP releases energy by transferring phosphate from ATP to some other molecule Phosphorylation = transfer of a phosphate functional group from one molecule to another Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0 to 100C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0 to 100C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider asking your students to think of the terms as A-3-P and A-2-P, noting that the word roots tri = 3 and di = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population). © 2012 Pearson Education, Inc. 13

14 Protein filament moved Solute transported
Figure 5.12B Chemical work Mechanical work Transport work ATP ATP ATP Solute P Motor protein P P Reactants Membrane protein P Figure 5.12B How ATP powers cellular work P P Product Molecule formed Protein filament moved Solute transported ADP P ADP P ADP P 14

15 How Does Cell Regenerate ATP?
ATP = renewable source of energy for the cell. ATP cycle = energy released in an exergonic reaction is used in an endergonic reaction to generate ATP. ATP Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0 to 100C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0 to 100C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider asking your students to think of the terms as A-3-P and A-2-P, noting that the word roots tri = 3 and di = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population). Phosphorylation Hydrolysis Energy from exergonic reactions Energy for endergonic reactions ADP P © 2012 Pearson Education, Inc. 15

16 HOW ENZYMES FUNCTION © 2012 Pearson Education, Inc. 16

17 Enzymes = Organic catalysts
Increase RATE of chemical reaction by decreasing activation energy (EA). EA = energy barrier must be overcome before any chemical reaction can begin. Activation energy barrier Enzyme Activation energy barrier reduced by enzyme Reactant Reactant Energy Student Misconceptions and Concerns For students not previously familiar with activation energy, analogies can make all the difference. Activation energy can be thought of as a small input that is needed to trigger a large output. This is like (a) an irritated person who needs only a bit more frustration to explode in anger, (b) small waves that lift debris over a dam, or (c) lighting a match around lighter fluid. In each situation, the output is much greater than the input. Teaching Tips The information in DNA is used to direct the production of RNA, which in turn directs the production of proteins. However, in Chapter 3, four different types of biological molecules were noted as significant components of life. Students who think this through might wonder, and you could point out that DNA does not directly control the production of carbohydrates and lipids. So how does DNA exert its influence over the synthesis of these two chemical groups? The answer is largely by way of enzymes, proteins with the ability to promote the production of carbohydrates and lipids. Energy Products Products Without enzyme With enzyme © 2012 Pearson Education, Inc. Animation: How Enzymes Work 17

18 Progress of the reaction
b Energy Reactants c Figure 5.13Q Activation energy with and without an enzyme Products Progress of the reaction Enzymes Only Increase RATE of reaction, NOT the energy Level of reactants or products!!! 18

19 A specific enzyme catalyzes each cellular reaction
An enzyme Is specific in substrate(s) it binds And reaction it catalyzes Substrate = reactant A substrate binds at enzyme active site. Enzymes are specific because their active site fits only specific substrate molecules Active site is result of 3D folding of protein Student Misconceptions and Concerns The specific interactions of enzymes and substrates can be illustrated with simple physical models. Many students new to these concepts will benefit from several forms of explanation, including diagrams such as those in the textbook, physical models, and the opportunity to manipulate or create their own examples. Just like pitching a tent, new concepts are best constructed with many lines of support. Teaching Tips 1. The information in DNA is used to direct the production of RNA, which in turn directs the production of proteins. However, in Chapter 3, four different types of biological molecules were noted as significant components of life. Students who think this through might wonder, and you could point out that DNA does not directly control the production of carbohydrates and lipids. So how does DNA exert its influence over the synthesis of these two chemical groups? The answer is largely by way of enzymes, proteins with the ability to promote the production of carbohydrates and lipids. 2. The text notes that the relationship between an enzyme and its substrate is like a handshake, with each hand generally conforming to the shape of the other. This induced fit is also like the change in shape of a glove when a hand is inserted. The glove’s general shape matches the hand, but the final “fit” requires some additional adjustments. © 2012 Pearson Education, Inc. 19

20 Catalytic cycle of an enzyme
1 Enzyme available with empty active site Active site Substrate (sucrose) 2 Substrate binds to enzyme with induced fit Enzyme (sucrase) Glucose Fructose H2O Figure 5.14_s4 The catalytic cycle of an enzyme (step 4) 4 Products are released 3 Substrate is converted to products 20

21 Factors that Effect Enzyme-Catalyzed Reactions
For every enzyme, there are optimal conditions under which it is most effective. Temperature pH Substrate Concentration Enzyme Concentration Cofactors/coenzymes Inhibitors Student Misconceptions and Concerns The specific interactions of enzymes and substrates can be illustrated with simple physical models. Many students new to these concepts will benefit from several forms of explanation, including diagrams such as those in the textbook, physical models, and the opportunity to manipulate or create their own examples. Just like pitching a tent, new concepts are best constructed with many lines of support. Teaching Tips 1. The information in DNA is used to direct the production of RNA, which in turn directs the production of proteins. However, in Chapter 3, four different types of biological molecules were noted as significant components of life. Students who think this through might wonder, and you could point out that DNA does not directly control the production of carbohydrates and lipids. So how does DNA exert its influence over the synthesis of these two chemical groups? The answer is largely by way of enzymes, proteins with the ability to promote the production of carbohydrates and lipids. 2. The text notes that the relationship between an enzyme and its substrate is like a handshake, with each hand generally conforming to the shape of the other. This induced fit is also like the change in shape of a glove when a hand is inserted. The glove’s general shape matches the hand, but the final “fit” requires some additional adjustments. © 2012 Pearson Education, Inc. 21

22 Factors that Affect Enzyme-Catalyzed Reactions
Many enzymes require nonprotein helpers called cofactors, which bind to the active site and function in catalysis. Inorganic molecules Coenzymes Organic molecule that acts as cofactor Student Misconceptions and Concerns The specific interactions of enzymes and substrates can be illustrated with simple physical models. Many students new to these concepts will benefit from several forms of explanation, including diagrams such as those in the textbook, physical models, and the opportunity to manipulate or create their own examples. Just like pitching a tent, new concepts are best constructed with many lines of support. Teaching Tips 1. The information in DNA is used to direct the production of RNA, which in turn directs the production of proteins. However, in Chapter 3, four different types of biological molecules were noted as significant components of life. Students who think this through might wonder, and you could point out that DNA does not directly control the production of carbohydrates and lipids. So how does DNA exert its influence over the synthesis of these two chemical groups? The answer is largely by way of enzymes, proteins with the ability to promote the production of carbohydrates and lipids. 2. The text notes that the relationship between an enzyme and its substrate is like a handshake, with each hand generally conforming to the shape of the other. This induced fit is also like the change in shape of a glove when a hand is inserted. The glove’s general shape matches the hand, but the final “fit” requires some additional adjustments. © 2012 Pearson Education, Inc. 22

23 Enzyme Concentration

24 Substrate Concentration

25 Temperature - affects molecular motion

26 pH

27 Enzyme inhibitors can regulate enzyme activity
Inhibitor = chemical that interferes with an enzyme’s activity. Competitive inhibitors block substrates from entering the active site and reduce an enzyme’s productivity. Noncompetitive inhibitors bind to the enzyme somewhere other than the active site, change the shape of the active site, and prevent the substrate from binding. Substrate Enzyme Allosteric site Active site Normal binding of substrate Competitive inhibitor Noncompetitive inhibitor Enzyme inhibition Student Misconceptions and Concerns The specific interactions of enzymes and substrates can be illustrated with simple physical models. Many students new to these concepts will benefit from several forms of explanation, including diagrams such as those in the textbook, physical models, and the opportunity to manipulate or create their own examples. Just like pitching a tent, new concepts are best constructed with many lines of support. Teaching Tips 1. The information in DNA is used to direct the production of RNA, which in turn directs the production of proteins. However, in Chapter 3, four different types of biological molecules were noted as significant components of life. Students who think this through might wonder, and you could point out that DNA does not directly control the production of carbohydrates and lipids. So how does DNA exert its influence over the synthesis of these two chemical groups? The answer is largely by way of enzymes, proteins with the ability to promote the production of carbohydrates and lipids. 2. Enzyme inhibitors that block the active site are like (a) a person sitting in your assigned theater seat or (b) a car parked in your parking space. Analogies for inhibitors that change the shape of the active site are more difficult to imagine. Consider challenging your students to think of such analogies. (Perhaps someone adjusting the driver seat of the car differently from your preferences and then leaving it that way when you try to use the car.) 3. Feedback inhibition relies upon the negative feedback of the accumulation of a product. Ask students in class to suggest other products of reactions that inhibit the process that made them when the product reaches high enough levels. (Gas station pumps routinely shut off when a high level of gasoline is detected. Furnaces typically turn off when enough heat has been produced.) © 2012 Pearson Education, Inc. 27

28 Enzyme inhibitors are important in regulating cell metabolism.
Feedback inhibition = product of metabolic pathway acts as an inhibitor of one of the enzymes in the pathway Feedback inhibition Enzyme 1 Enzyme 2 Enzyme 3 A B C D Reaction 1 Reaction 2 Reaction 3 Starting molecule Figure 5.15B Feedback inhibition of a biosynthetic pathway Product 28

29 You should now be able to
Describe the fluid mosaic structure of cell membranes. Describe the diverse functions of membrane proteins. Relate the structure of phospholipid molecules to the structure and properties of cell membranes. Define diffusion and describe the process of passive transport. © 2012 Pearson Education, Inc. 29

30 You should now be able to
Explain how osmosis can be defined as the diffusion of water across a membrane. Distinguish between hypertonic, hypotonic, and isotonic solutions. Explain how transport proteins facilitate diffusion. Distinguish between exocytosis, endocytosis, phagocytosis, pinocytosis, and receptor-mediated endocytosis. © 2012 Pearson Education, Inc. 30

31 You should now be able to
Define and compare kinetic energy, potential energy, chemical energy, and heat. Define the two laws of thermodynamics and explain how they relate to biological systems. Define and compare endergonic and exergonic reactions. Explain how cells use cellular respiration and energy coupling to survive. © 2012 Pearson Education, Inc. 31

32 You should now be able to
Explain how ATP functions as an energy shuttle. Explain how enzymes speed up chemical reactions. Explain how competitive and noncompetitive inhibitors alter an enzyme’s activity. Explain how certain drugs, pesticides, and poisons can affect enzymes. © 2012 Pearson Education, Inc. 32

33 Table 5.UN05 Table 5.UN05 Applying the Concepts, question 16 33

34 Rate of reaction 1 2 3 4 5 6 7 8 9 10 pH Figure 5.UN06
Figure 5.UN06 Applying the Concepts, question 17 1 2 3 4 5 6 7 8 9 10 pH 34


Download ppt "ENERGY, THERMODYNAMICS and ENZYMES"

Similar presentations


Ads by Google