Download presentation
1
Performance Analysis Lab,
FemtoCell Uday Sankar.V Research Scholar, Performance Analysis Lab, IISc,Bangalore
2
Contents Introduction FemtoCells Issues and Challenges Interference
Mitigation Conclusion
3
Data rate α Signal quality
Information Voice : 10kbps data rate Can tolerate Low signal quality continuous ARPU is low in saturated market Data : Multi Mbps data rate Require much higher signal quality Bursty in nature ARPU is high in saturated market Data rate α Signal quality
4
How to get improved signal quality?
Getting Transmit and Receiving antennas close to each other. Provides the benefits of high quality links and more spatial reuse. New approach: For wireless access, we can look for packet data and IP based systems.
5
Some small Analysis Data Traffic is Bursty
It increases the LAN speed i.e: requires more bandwidth User requirement: Need same QOS as like in wireline IP connection More Bandwidth requirement is nothing but improving spectral efficiency. How can we improve spectral efficiency?
6
Use of smart antennas/MIMO and higher order modulation
Enhance the signal processing capability to a point where the channel efficiency is close to the Shannon bound Use of smart antennas/MIMO and higher order modulation Increasing the sectorisation of a cell or reducing the cell size. Shall we consider it as shrinking existing macro cell?
7
Macro cell has hierarchical architecture and manual cell planning.
This process do not scale to support the millions of smaller cells Does not provide ubiquitous (Any where , anytime high speed network access) Ubiquitous requires three components/characteristics: Scalability Ability to provide a cost effective architecture that could sustain cellular mobility The mechanism that would lace such an architecture into an autonomic paradigm
8
The above concepts are embedded in BSR (base station router) concepts
Combines all functions of a Radio Access Network and core network in a single network element. i.e: Node B,RNC,serving GPRS support node (SGSN), gate way GPRS support node (GGSN) This architecture is called as flat cellular architecture.
9
Ref: 3GPP standard
10
i.e: individual BW that user can expect is limited.
Current cellular system is designed and planned based on concept of shared resources. wireless cell shares radio resources with those users that cohabit in cell i.e: individual BW that user can expect is limited. This is called Public bandwidth concept Acceptable for voice service. Data service need same availability of larger bandwidth and low delay as those of wired connection to the internet. This is called private bandwidth concept
11
Incorporating all above concepts into a cell called as FEMTO CELL.
Focusing areas includes hot zones, inbuilding,home and enterprise e areas Femtocell deployment In secondary frequency band Lower spectral efficiency/area Cochannel deployment Macrocell and femto cell have deployed in same frequency band Results in interference issue
12
Issues and Challenges Interference mitigation and access control
System selection and access control Handoffs Security aspects Location detection Network architecture and scalability Network and frequency planning Integration with operators core network
13
To mitigate this effects the following issues to be investigated
Deployment of co channel femtocells will impact existing macro cell networks affecting their capacity and performance. To mitigate this effects the following issues to be investigated Access methods : open, close and hybrid access Frequency band allocation Timing and synchronization Self organization Since number and position of FAP’s will be unknown, interference management cannot be further handled by the operator using traditional network planning and optimization techniques
14
Interference analysis
Since femto cells are deployed by users in an unplanned manner and also has restricted access (to protect the use of limited access), it creates interference with existing users. Assumed that femto cells are synchronized with that of the umbrella macro cells. Two types of interferences Cross layer interference Situations in which the aggressor (FAP) and the victim (macro cell user) of interference belong the different network layers Co layer interference Here the aggressor(FAP) and the victim(neighbour femto cell user) belong to same network layer
15
Proposed methods for overcome interference
Interference cancellation technique Disregarded due to errors in the concellation process Use of sectoral antennas at FAP Reducing interference by decreasing the number of interferers Dynamic selection of predefined antenna patterns All above are hardware based apporach (costly) Interference avoidance (power and subchannel management) Good alternative
16
This method can be applied in FAP also
Power control algorithms and radio resource management are tools often used in cellular systems to mitigate interference If not users located far from a basestation will be jammed by users in much closer positions This method can be applied in FAP also Eg: in closed access femto cells, users located far from the FAP and being asked to raise their power level might produce high level of interference to neighboring femtocells or even to the macro cell
19
Interference management technique as per 3GPP (release 7 standard)
Since, RF coverage of femto cells are not manually optimized by the cellular operator and deployment is generally adhoc, RF interference issues may arise unless appropriate mitigation methods are utilised. Proposed interference management technique Downlink Femto cell carrier selection DL Transmit power self calibration Uplink Adaptive attenuation at the femto cell Limiting the transmit power of femto cell users
20
Simple femto-macro interference model
21
Example of Femto-Macro interference scenerio
22
Conclusion Femtocell basic concepts Issues and challenges
Interference mitigation techniques.
23
Thank you…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.