Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tree Recursion Traditional Approach. Tree Recursion Consider the Fibonacci Number Sequence: Time: 0 1 2 3 4 5 6 7 8 0, 1, 1, 2, 3, 5, 8, 13, 21,... /

Similar presentations


Presentation on theme: "Tree Recursion Traditional Approach. Tree Recursion Consider the Fibonacci Number Sequence: Time: 0 1 2 3 4 5 6 7 8 0, 1, 1, 2, 3, 5, 8, 13, 21,... /"— Presentation transcript:

1 Tree Recursion Traditional Approach

2 Tree Recursion Consider the Fibonacci Number Sequence: Time: 0 1 2 3 4 5 6 7 8 0, 1, 1, 2, 3, 5, 8, 13, 21,... / 0when n = 0 fib(n) = | 1when n = 1 \ fib(n - 1) + fib(n - 2)otherwise

3 Tree Recursion (cont.) As code this is: int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

4 What happens when computing fib(5)? fib(5) int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

5 fib(5) fib(4) fib(3) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

6 fib(5) fib(4) fib(3) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

7 fib(5) fib(4) fib(3) fib(2) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

8 fib(5) fib(4) fib(3) fib(2) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

9 fib(5) fib(4) fib(3) fib(2) fib(1) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

10 fib(5) fib(4) fib(3) fib(2) fib(1) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

11 5 3 2 2111 111010 10 1 111 1 0 00 What happens when computing fib(5)?

12 What is the Problem? I am explaining everything! Why not make this more interesting by using MS Agents Agents are helpers like the paper clip in Word But they are much more: They talk to you And can, in some cases, understand voice commands

13 Tree Recursion MS Agent Approach

14 Tree Recursion Consider the Fibonacci Number Sequence: Time: 0 1 2 3 4 5 6 7 8 0, 1, 1, 2, 3, 5, 8, 13, 21,...  This sequence is defined by the rule: / 0when n = 0 fib(n) = | 1when n = 1 \ fib(n - 1) + fib(n - 2)otherwise

15 Tree Recursion (cont.) As code this is: int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

16 What happens when computing fib(5)? fib(5) int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

17 fib(5) fib(4) fib(3) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

18 fib(5) fib(4) fib(3) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

19 fib(5) fib(4) fib(3) fib(2) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

20 fib(5) fib(4) fib(3) fib(2) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

21 fib(5) fib(4) fib(3) fib(2) fib(1) What happens when computing fib(5)? int fib ( int n ) { if ( n <= 0 ) return 0; else if ( n = 1 ) return 1; else return fib ( n - 1 ) + fib ( n - 2 ) ; }

22 MASH: Microsoft Agent Scripting Helper MASH is an editor that allows you to construct the scripts that you can then embed in other applications MASH

23 Where to Learn More MS Agent Page: http://msdn.microsoft.com/workshop/imedia/agent/default.asp http://msdn.microsoft.com/workshop/imedia/agent/default.asp Sunfires MS Agent Page: http://www.angelfire.com/il2/sunfire/index.html http://www.angelfire.com/il2/sunfire/index.html Uniquities MS Agent Planet: http://www.uniquities.co.uk/whatsnew.htm http://www.uniquities.co.uk/whatsnew.htm Presentation Narrator: http://msdn.microsoft.com/workshop/imedia/agent/sampleoffice.asp http://msdn.microsoft.com/workshop/imedia/agent/sampleoffice.asp Microsoft Agent Scripting Helper: http://www.bellcraft.com/mash/ http://www.bellcraft.com/mash/


Download ppt "Tree Recursion Traditional Approach. Tree Recursion Consider the Fibonacci Number Sequence: Time: 0 1 2 3 4 5 6 7 8 0, 1, 1, 2, 3, 5, 8, 13, 21,... /"

Similar presentations


Ads by Google