Download presentation
Presentation is loading. Please wait.
Published byChristopher Figueroa Modified over 11 years ago
1
Progressive Simplicial Complexes Jovan Popovic Carnegie Mellon University Jovan Popovic Carnegie Mellon University Hugues Hoppe Microsoft Research Hugues Hoppe Microsoft Research
2
Rendering Rendering Storage Storage Transmission Transmission Rendering Rendering Storage Storage Transmission Transmission Complex Models 232, 974 faces
3
Previous Work Progressive Meshes [Hoppe, 96] 150 M0M0M0M0 vspl 0 M1M1M1M1152 M 175 500 … vspl i … 13,546 vspl n-1 M n =M ^ M0M0M0M0 vspl 0 … vspl i … vspl n-1 Progressive Mesh (PM) representation
4
PM Features Continuous LOD sequence Smooth visual transitions (Geomorphs) Progressive transmission Space-efficient representation Continuous LOD sequence Smooth visual transitions (Geomorphs) Progressive transmission Space-efficient representation
5
Would also like: PM Restrictions Supports only meshes (orientable, 2-dimensional manifolds) Supports only meshes (orientable, 2-dimensional manifolds)
6
PM Restrictions Supports only meshes (orientable, 2-dimensional manifolds) Preserves topological type Supports only meshes (orientable, 2-dimensional manifolds) Preserves topological type M0M0M0M0 MnMnMnMn
7
PM Restrictions Supports only meshes (orientable, 2-dimensional manifolds) Preserves topological type Supports only meshes (orientable, 2-dimensional manifolds) Preserves topological type 167,7448,0002,522 M0M0M0M0 MnMnMnMn … M i …
8
Progressive Simplicial Complexes (PSC) edge collapse (ecol) vertex split (vspl) PM
9
Previous Work Vertex unification schemes [Rossignac-Borrel 93] [Schaufler-Strzlinger 95] [Schaufler-Stürzlinger 95] Vertex unification schemes [Rossignac-Borrel 93] [Schaufler-Strzlinger 95] [Schaufler-Stürzlinger 95]
10
Progressive Simplicial Complexes (PSC) edge collapse (ecol) vertex split (vspl) PM vertex unification (vunify) PSC
11
Progressive Simplicial Complexes (PSC) edge collapse (ecol) vertex split (vspl) PM vertex unification (vunify) generalized vertex split (gvspl) PSC
12
Simplicial Complex VK M ^
13
V K M^
14
K V M^ 1 23 4 567 = {1, 2, 3, 4, 5, 6, 7} + simplices abstract simplicial complex {1}, {2}, …0-dim
15
Simplicial Complex 5 1 23 467 = {1, 2, 3, 4, 5, 6, 7} + simplices V K M ^ {1}, {2}, …0-dim {1, 2}, {2, 3}…1-dim abstract simplicial complex
16
Simplicial Complex 5 1 23 467 = {1, 2, 3, 4, 5, 6, 7} + simplices {1}, {2}, …0-dim {1, 2}, {2, 3}…1-dim VK M ^ {4, 5, 6}, {6, 7, 5}2-dim abstract simplicial complex
17
PSC representation PSC Representation M1M1M1M1 M 22 gvspl 1 M 116 … gvspl i … gvspl n-1 M n =M ^ arbitrary simplicial complexes
18
PSC Features Video Destroyer PSC sequence PM, PSC comparison PSC Geomorphs Line Drawing Destroyer PSC sequence PM, PSC comparison PSC Geomorphs Line Drawing
19
Generalized Vertex Split Encoding vunify
20
gvspl vunify aiaiaiai gvspl i = {a i },
21
Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim 1-dim 2-dim undefinedundefined
22
Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim 1-dim 2-dim undefinedundefined
23
Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim 1-dim 2-dim undefinedundefined S
24
gvspl i = {a i }, Generalized Vertex Split Encoding vunify aiaiaiai gvspl 0-simplices 4
25
vunify aiaiaiai gvspl i = {a i }, 4 34122 gvspl 1-simplices
26
gvspl i = {a i }, 4 34122 12 Generalized Vertex Split Encoding vunify aiaiaiai 2-simplices gvspl
27
gvspl i = {a i }, 4 34122 12 Generalized Vertex Split Encoding vunify aiaiaiai connectivity gvspl S
28
vunify gvspl i = {a i }, 4 34122 12, vpos gvspl
29
Connectivity Encoding Analysis vunify example: 15 bits models (avg): 30 bits 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 33 3 4 4 4 4 4 44 4 gvspl
30
Connectivity Encoding Constraints vunify 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 33 3 4 4 4 4 4 44 4 gvspl
31
1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 33 3 4 4 4 4 4 44 4 Connectivity Encoding Compression vunifyexample: 15 bits models (avg): 30 bits example: 10.2 bits models (avg): 14 bits gvspl
32
Space Analysis Average 2D manifold mesh n vertices, 3n edges, 2n triangles PM representation n ( log 2 n + 4 ) bits PSC representation n ( log 2 n + 7 ) bits Average 2D manifold mesh n vertices, 3n edges, 2n triangles PM representation n ( log 2 n + 4 ) bits PSC representation n ( log 2 n + 7 ) bits
33
Form a set of candidate vertex pairs PSC Construction 1-simplices of K DT 1-simplices of K candidate vertex pairs
34
Unify pair with lowest cost updating costs of affected candidatesupdating costs of affected candidates Unify pair with lowest cost updating costs of affected candidatesupdating costs of affected candidates PSC Construction Form a set of candidate vertex pairs 1-simplices of K 1-simplices of K DT1-simplices of K 1-simplices of K DT Compute cost of each vertex pair E = E dist + E disc + E area + E foldE = E dist + E disc + E area + E fold Form a set of candidate vertex pairs 1-simplices of K 1-simplices of K DT1-simplices of K 1-simplices of K DT Compute cost of each vertex pair E = E dist + E disc + E area + E foldE = E dist + E disc + E area + E fold
35
Simplification Results 72,346 triangles 674 triangles
36
Simplification Results 8,936 triangles 170 triangles
37
PSC VK M^ M1M1M1M1 gvspl n progressive geometry and topology lossless n any triangulation single vertex PSC Summary arbitrary simplicial complex
38
Continuous LOD sequence Smooth transitions (Geomorphs) Progressive transmission Space-efficient representation Continuous LOD sequence Smooth transitions (Geomorphs) Progressive transmission Space-efficient representation PSC Summary Supports topological changes Models of arbitrary dimension Supports topological changes Models of arbitrary dimension e.g. LOD in volume rendering
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.