Download presentation
Presentation is loading. Please wait.
Published byMattie Wallington Modified over 10 years ago
1
차세대 OLAP 솔루션 FactView 2007.7.12 임팩트라인 윤형기
2
2 발표순서 배경 전통적인 BI/OLAP New Trends of BI 차세대 BI/OLAP: FactView 시연 맺음말
3
3 배경 전략경영과 BI BI Framework BI 란 ? …
4
4 전통적인 BI/OLAP 개요 Conventional BI Architecture Data source viewCube designer
5
5 전통적인 BI/OLAP 프로젝트 절차
6
6 문제점 ( 현황 ) – 많은 투자와 오랜 준비기간 도입 구축에 평균 6~18 개월 – 높은 실패율 정보부재, multiple versions of truth – 모델링 방법론상의 논쟁 Inmon vs. Kimball – 일부 분석가에만 한정 – 유연성 부족 원인 : – 설계사상 :“ 컴퓨팅자원의 절감 > 현업 요구사항 해결 ” –Cube = multi-dimensional analysis based on pre- calculating 전통적인 BI/OLAP 현황과 문제점
7
7 Main drivers for change –“From tactical, department use To strategic, enterprise-wide BI” 기타 –Web 2.0 and AJAX technology –Search engine(Google OneBox), BPM 등과의 결합 –… New Trends of BI BI 동향
8
8 New Trends of BI BI 동향 – 계속 – 신 기술 Pre-aggregated cube 제거 –H/W 기술 : 메모리, 64-bit CPU (IA) –S/W 기술 : DB, UI/MMI – In-memory analytics The Great BI Squeeze:
9
9 차세대 BI/OLAP: FactView 개요 BSC QPR 제품군 Workflow 성과관리, 전략관리 Workflow, Automation BI/OLAP Cubeless OLAP 분석도구 (FactView enabled by QliKView) BPM 협업 포털 BPM (Process), BAM (Activity)
10
10 차세대 BI/OLAP: FactView 특징 – 계속 – Cube-less: Dimension 과 measure 의 구분이 없다. –Not “pre-aggregated” 상황변화에 유연하게 대처 –On Demand Calculation Engine: Transform of Data Model
11
11 In-Memory 분석 플랫폼 –Powerful: Fast (On-demand) Calculation Engine 고성능 메모리 load 시에 데이터 압축 – 약 10% 로 줄임. Summary-level as well as record-level analytics Large scale, massive datasets – 현재 ) In Memory 분석이 OLAP 과 reporting 시장의 갭을 메워줌. – 전망 ) “ will eventually replace them mass market BI 차세대 BI/OLAP: FactView 특징 – 계속 –
12
12 차세대 BI/OLAP: FactView 특징 – 계속 – Visually Intuitive UI: –Point-and-Click Queries, color coding in query feedback Equals to this… WHERE [Fiscal Year] = 2004 AND ([Fiscal Month] = ‘Apr’ OR [Fiscal Month] = ‘May’ OR [Fiscal Month] = ‘Jun’) AND [Division Name] = ‘Domestic’ AND ([Region Name] = ‘Northeast’ OR [Region Name] = ‘Southern’) AND ([Product Type Desc] = ‘Breakfast Foods’ OR ([Product Type Desc] = ‘Dairy’ OR [Product Type Desc] = ‘Eggs’)
13
13 차세대 BI/OLAP FactView 아키텍처
14
14 국내 / 해외 업종별 사례 시연 Demonstration
15
15 차세대 BI/OLAP: FactView 특징 – 계속 – Scalability –RTE (Real-time, Near real-time OLAP) –Very Large Data Warehouse 수 천명 동시사용, 수 억 record sub-second response time – 대량 Data 분석의 필요성 Business users: CRM/POS, CDR, risk 분석 Technical users: … Flexible: –RAD (Rapid Appl.Design), 표준 interfaces (ODBC, Web Services) (Near) Real-time OLAP 기타 –AJAX Zero-Footprint Client (ZFC) 환경 지원 –BPM, BSC Portal 과 통합 –Mapping data (GIS) 와의 결합 –SAP NetWeaver 대체 / 보완 With or Without Data Warehouse
16
16 FV 의 주된 작업은 데이터 위치확인, 필요한 분석방법 결정 등 차세대 BI/OLAP: FactView 개발 절차
17
17 ETL Script Dimensions 결정 측정지표 결정 Report 작성 Dashboard 작성 데이터 추출 cube 계산 Render UI ETL Script Dimensions 결정 측정지표 결정 Report 작성 Dashboard 작성 데이터 추출 Cube 계산 Render UI 2 Months 4 Hours Seconds 1 일 1 시간수 초 단위 기존의 OLAP FactView/ QlikView ONE TIMEDAILY RUN TIME DATA BOUNDPROCESS BOUND MEMORY/PROCESS BOUND 차세대 BI/OLAP 개발절차 – 계속 –
18
18 맺음말 평가 Industry Leadership
19
19 맺음말 평가 – 계속 – Gartner Magic Quadrant FY 2007 FY 2004
20
20 맺음말 소개 회사소개 – 임팩트라인 소개 2000 년 설립 ( 서울 ) 주된 소프트웨어 사업 – 상용 솔루션 (www.impactline.net)www.impactline.net – 오픈 솔루션 (OSS - Open BI) (www.openwith.net)www.openwith.net –QRP Plc. Collaborative BI 제품군 QPR Community: 50 여 개국, 3000 여 개 기업 www.qpr.com –QlikTech OLAP solution - QlikView 6,000 개 기업의 25 만 명의 사용자 (68 개 국가 ) www.qliktech.com
21
21 맺음말 질의 응답 Q & A
22
보충자료
23
23 기반기술 Background Technology 64-bit architecture –Intel Xeon 에서 commodity 64-bit 시작 Itanium … AMD Opteron 에서 경쟁 격화. –directly addressable memory = 18 exabytes (1 EB = 1 GB x 10 9 ) (cf. 4 GB in 32-bit CPU) 특히 과학기술 등에 중요한 의미. 단, 실제속도는 ∝ 시스템 architecture & clock 속도 – don’t need S/W tricks. ( 예 : virtual memory, Cube,...) OLAP –( 기존 ) Cube = pre-calculated totals for pre-defined hierarchies 즉, 필요할 것으로 예상되는 정보로부터 cube 를 생성. 필요 시 재 작업 ( 현업 + 전산 ) –AQL (Associative Query Logic) 기술 ( 특허 ) 등.
24
24 기반기술 Background Technology – 계속 – In traditional systems, the same piece of data may reside in hundreds of places. In AQL systems, a piece of data occurs only once. One can extract data elements from various existing data sources to form a Data Cloud. The Data Cloud cleans up the data as it loads, eliminating inconsistencies and redundancies. Building the Data Cloud requires fewer steps and is much simpler than building a data warehouse. Because the Data Cloud generally is only 15 to 20 percent of the size of the original source data, the entire data sets can reside in the RAM that already exists on most computers. The compact size of the Data Cloud also allows data to be retrieved, combined, and manipulated almost instantaneously. AQL (Associative Query Logic) TM
25
25 기반기술 DW Definition of a DW (Bill Inmon, 1992)Bill Inmon, 1992 –a database that contains the 4 characteristics: Subject oriented (rather than operational applications) Nonvolatile Integrated Time variant
26
26 기반기술 DW Wine Club Data Model3-dimensional Data Cube
27
27 기반기술 DW Wine Club Sales Dimensional ModelMultiple Join-Path Data Model
28
28 기반기술 DW Main Components of DW
29
29 기반기술 DW STD for Ordering Process Levels of Summarization
30
30 기반기술 DW Star SchemaSnow-flak Schema
31
31 기반기술 DW Modified DW structure incorporating summary navigation and data mining
32
32 기반기술 CRM Components of CRM
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.