Download presentation
1
Section 18.3 Hydrogen Ions and pH
Explain pH and pOH. Relate pH and pOH to the ion product constant for water. Calculate the pH and pOH of aqueous solutions. pH and pOH are logarithmic scales that express the concentrations of hydrogen ions and hydroxide ions in aqueous solutions. Section 18-3
2
Acids Have a pH less than 7
The pH Scale Acids Have a pH less than 7 Bases have a pH greater than 7
3
pH and pOH (cont.) Litmus paper and a pH meter with electrodes can determine the pH of a solution. Section 18-3
4
Self-Ionization of Water
H2O + H2O H3O+ + OH- At 25, [H3O+] = [OH-] = 1 x 10-7 Kw is a constant at 25 C: Kw = [H3O+][OH-] Kw = (1 x 10-7)(1 x 10-7) = 1 x 10-14
5
pH and pOH Concentrations of H+ ions are often small numbers expressed in exponential notation. pH is the negative logarithm of the hydrogen ion concentration of a solution. pH = –log [H+] Section 18-3
6
The sum of pH and pOH equals 14.
pH and pOH (cont.) pOH of a solution is the negative logarithm of the hydroxide ion concentration. pOH = –log [OH–] The sum of pH and pOH equals 14. Section 18-3
7
Relationship between pH and pOH
Calculating pH, pOH pH = -log10[H3O+] pOH = -log10[OH-] Relationship between pH and pOH pH + pOH = 14 Finding [H3O+], [OH-] from pH, pOH [H3O+] = 10-pH [OH-] = 10-pOH
8
Calculating pH from solution concentration…
9
pH and pOH (cont.) For all strong monoprotic acids, the concentration of the acid is the concentration of H+ ions. For all strong bases, the concentration of the OH– ions available is the concentration of OH–. Weak acids and weak bases only partially ionize and Ka and Kb values must be used. Section 18-3
10
Dissociation Constants: Strong Acids
Formula Conjugate Base Ka Perchloric HClO4 ClO4- Very large Hydriodic HI I- Hydrobromic HBr Br- Hydrochloric HCl Cl- Nitric HNO3 NO3- Sulfuric H2SO4 HSO4- Hydronium ion H3O+ H2O 1.0
11
Dissociation Constants: Weak Acids
Formula Conjugate Base Ka Iodic HIO3 IO3- 1.7 x 10-1 Oxalic H2C2O4 HC2O4- 5.9 x 10-2 Sulfurous H2SO3 HSO3- 1.5 x 10-2 Phosphoric H3PO4 H2PO4- 7.5 x 10-3 Citric H3C6H5O7 H2C6H5O7- 7.1 x 10-4 Nitrous HNO2 NO2- 4.6 x 10-4 Hydrofluoric HF F- 3.5 x 10-4 Formic HCOOH HCOO- 1.8 x 10-4 Benzoic C6H5COOH C6H5COO- 6.5 x 10-5 Acetic CH3COOH CH3COO- 1.8 x 10-5 Carbonic H2CO3 HCO3- 4.3 x 10-7 Hypochlorous HClO ClO- 3.0 x 10-8 Hydrocyanic HCN CN- 4.9 x 10-10
12
A Weak Acid Equilibrium Problem
What is the pH of a 0.50 M solution of acetic acid, HC2H3O2, Ka = 1.8 x 10-5 ? Step #1: Write the dissociation equation HC2H3O2 C2H3O2- + H+
13
A Weak Acid Equilibrium Problem
What is the pH of a 0.50 M solution of acetic acid, HC2H3O2, Ka = 1.8 x 10-5 ? Step #2: ICE it! HC2H3O2 C2H3O2- + H+ I C E 0.50 - x +x +x x x x
14
A Weak Acid Equilibrium Problem
What is the pH of a 0.50 M solution of acetic acid, HC2H3O2, Ka = 1.8 x 10-5 ? Step #3: Set up the law of mass action HC2H3O2 C2H3O2- + H+ E x x x
15
A Weak Acid Equilibrium Problem
What is the pH of a 0.50 M solution of acetic acid, HC2H3O2, Ka = 1.8 x 10-5 ? Step #4: Solve for x, which is also [H+] HC2H3O2 C2H3O2- + H+ E x x x [H+] = 3.0 x 10-3 M
16
A Weak Acid Equilibrium Problem
What is the pH of a 0.50 M solution of acetic acid, HC2H3O2, Ka = 1.8 x 10-5 ? Step #5: Convert [H+] to pH HC2H3O2 C2H3O2- + H+ E x x x
17
Dissociation of Strong Bases
MOH(s) M+(aq) + OH-(aq) Strong bases are metallic hydroxides Group I hydroxides (NaOH, KOH) are very soluble Group II hydroxides (Ca, Ba, Mg, Sr) are less soluble pH of strong bases is calculated directly from the concentration of the base in solution
18
Reaction of Weak Bases with Water
The base reacts with water, producing its conjugate acid and hydroxide ion: CH3NH2 + H2O CH3NH3+ + OH- Kb = 4.38 x 10-4
19
Kb for Some Common Weak Bases
Many students struggle with identifying weak bases and their conjugate acids.What patterns do you see that may help you? Base Formula Conjugate Acid Kb Ammonia NH3 NH4+ 1.8 x 10-5 Methylamine CH3NH2 CH3NH3+ 4.38 x 10-4 Ethylamine C2H5NH2 C2H5NH3+ 5.6 x 10-4 Diethylamine (C2H5)2NH (C2H5)2NH2+ 1.3 x 10-3 Triethylamine (C2H5)3N (C2H5)3NH+ 4.0 x 10-4 Hydroxylamine HONH2 HONH3+ 1.1 x 10-8 Hydrazine H2NNH2 H2NNH3+ 3.0 x 10-6 Aniline C6H5NH2 C6H5NH3+ 3.8 x 10-10 Pyridine C5H5N C5H5NH+ 1.7 x 10-9
20
Reaction of Weak Bases with Water
The generic reaction for a base reacting with water, producing its conjugate acid and hydroxide ion: B + H2O BH+ + OH- (All weak bases do this.)
21
A Weak Base Equilibrium Problem
What is the pH of a 0.50 M solution of ammonia, NH3, Kb = 1.8 x 10-5 ? Step #1: Write the equation for the reaction NH3 + H2O NH4+ + OH-
22
A Weak Base Equilibrium Problem
What is the pH of a 0.50 M solution of ammonia, NH3, Kb = 1.8 x 10-5 ? Step #2: ICE it! NH3 + H2O NH4+ + OH- I C E 0.50 - x +x +x x x x
23
A Weak Base Equilibrium Problem
What is the pH of a 0.50 M solution of ammonia, NH3, Kb = 1.8 x 10-5 ? Step #3: Set up the law of mass action NH3 + H2O NH4+ + OH- E x x x
24
A Weak Base Equilibrium Problem
What is the pH of a 0.50 M solution of ammonia, NH3, Kb = 1.8 x 10-5 ? Step #4: Solve for x, which is also [OH-] NH3 + H2O NH4+ + OH- E x x x [OH-] = 3.0 x 10-3 M
25
A Weak Base Equilibrium Problem
What is the pH of a 0.50 M solution of ammonia, NH3, Kb = 1.8 x 10-5 ? Step #5: Convert [OH-] to pH NH3 + H2O NH4+ + OH- E x x x
26
A B C D Section 18.3 Assessment
In dilute aqueous solution, as [H+] increases: A. pH decreases B. pOH increases C. [OH–] decreases D. all of the above A B C D Section 18-3
27
A B C D Section 18.3 Assessment
What is the pH of a neutral solution such as pure water? A. 0 B. 7 C. 14 D. 1.0 × 10–14 A B C D Section 18-3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.