Download presentation
Presentation is loading. Please wait.
Published byJared Chopin Modified over 10 years ago
1
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Model-based estimation and control on multicore platforms Motivation: Streamlined real-time control and estimation software written for single core runs slower on multicore Battery-driven embedded control systems need multicore processors for longer battery life and reduced heat production Control and estimation algorithms: Application design must map to the multicore architecture Parallel Cache-aware
2
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Work plan Goals: Re-design of control and estimation algorithms for linear speedup on multicore platforms Model processor and memory system demand of algorithms for guaranteed real-time performance Proof of concept in laboratory real-time setups (control) and data from industrial applications (estimation)
3
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Targeted algorithms Computationally intensive and distributed real-time algorithms: Estimation Kalman filter Particle filter Control Model-predictive control Multivariable control
4
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Results so far Effective implementation of the Kalman filter on multicore The KF is modified to give linear speedup Application to echo cancellation Memory bandwidth model Effective implementation of the Particle Filters on multicore A number of PFs is evaluated with respect to scaling, performance, computational burden Algorithms with good scaling properties on multicore are found. Application to bearings-only tracking (SAAB Systems) Feedforward state estimation algorithms are revisited to clarify design issues Laboratory setup for real-time estimation and control on multicore LEGO-based mobile robotic wireless sensor network Multicore central node Both control (of mobile robots) and estimation
5
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Future and ongoing research Estimation MIMO Kalman filtering (sensor fusion) Anomaly detection (SAAB Systems) Change detection by Kalman filter Change detection by Particle filter New applications Road grade estimation (Scania) Control Parallelization of model-predictive control (parallel optimization)
6
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Bearings-only tracking
7
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Speedup Particle filters
8
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Speedup Kalman filter GradKalkyl
9
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Anomaly detection Vid röda punkten 43 försvann Arctic Sea från AIS-systemet. Då var klockan 04.20 onsdagen den 24 juli 2009. En och en halv timme senare dök det upp igen vid den gröna punkten 44. Sedan drev fartyget långsamt norröver i nästan två timmar innan det fick upp farten och vände söderut igen. Karta: Sjöfartsverket.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.