Download presentation
Presentation is loading. Please wait.
Published byFelipe Moses Modified over 10 years ago
1
University of Joensuu Dept. of Computer Science P.O. Box 111 FIN- 80101 Joensuu Tel. +358 13 251 7959 fax +358 13 251 7955 www.cs.joensuu.fi K-means example 1 1 245 8 5 6 AB CD E F 1 1 2 45 8 5 6 c1c1 c2c2 c3c3 (1/4) Each datavector discarded from buffer will increase it’s last partition centroid’s ’weight’ Buffer New centroid properties are needed: ”Weight” and ”location” The more the centroid weights, the more it require pulling to move Buffer
2
University of Joensuu Dept. of Computer Science P.O. Box 111 FIN- 80101 Joensuu Tel. +358 13 251 7959 fax +358 13 251 7955 www.cs.joensuu.fi 1 1 2 45 8 5 6 AB C D E F c1c1 c2c2 c3c3 K-means example (2/4) Buffer 1 1 2 45 8 5 6 c1c1 c3c3 c2c2 AB CD E F
3
University of Joensuu Dept. of Computer Science P.O. Box 111 FIN- 80101 Joensuu Tel. +358 13 251 7959 fax +358 13 251 7955 www.cs.joensuu.fi 1 1 2 45 8 5 6 c1c1 c3c3 c2c2 K-means example (3/4) 1 1 2 45 8 5 6 c1c1 c2c2 c3c3 Buffer Starts to pull the ”heavy” Weighted centroid! Buffer
4
University of Joensuu Dept. of Computer Science P.O. Box 111 FIN- 80101 Joensuu Tel. +358 13 251 7959 fax +358 13 251 7955 www.cs.joensuu.fi 1 1 2 45 8 5 6 AB C D E F c1c1 c3c3 c2c2 K-means example (4/4) Buffer
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.