Download presentation
Presentation is loading. Please wait.
Published byMicah Baine Modified over 10 years ago
1
J.E. Sprittles (University of Birmingham / Oxford, U.K.) Y.D. Shikhmurzaev(University of Birmingham, U.K.) Seminar at KAUST, February 2012
2
‘Impact’ A few years after completing my PhD.....
3
Wetting: Statics Non-Wettable (Hydrophobic) Wettable (Hydrophilic)
4
Wetting: Dynamics
5
Wetting: As a Microscopic Process Macroscale Microscale Meniscus Capillary tube Wetting front
6
Wetting: Micro-Macro Spreading on a Porous Medium
8
Capillary Rise 50nm x 900nm Channels Han et al 06 27mm Radius Tube Stange et al 03 1 Million Orders of Magnitude!!
9
Curtain Coating
10
Curtain Coating Optimization Increased Coating Speed
11
Harnessing Instabilities: Spinning Disk Atomizer
12
Polymer-Organic LED (P-OLED) Displays
13
Inkjet Printing of P-OLED Displays Microdrop Impact & Spreading
14
Additive Manufacturing
16
Why bother? 1 - Recover Hidden Information 2 - Map Regimes of Spreading 3 – Experiment Millimetres in Milliseconds - Rioboo et al (2002) Microns in Microseconds - Dong et al (2002)
17
Wetting: Statics ) Young Laplace Contact Line Contact Angle
18
Wetting: Statics
19
) Dynamics: Classical Modelling Incompressible Navier Stokes Stress balance Kinematic condition No-Slip Impermeability Angle Prescribed No Solution!
20
L.E.Scriven (1971), C.Huh (1971), A.W.Neumann (1971), S.H. Davis (1974), E.B.Dussan (1974), E.Ruckenstein (1974), A.M.Schwartz (1975), M.N.Esmail (1975), L.M.Hocking (1976), O.V.Voinov (1976), C.A.Miller (1976), P.Neogi (1976), S.G.Mason (1977), H.P.Greenspan (1978), F.Y.Kafka (1979), L.Tanner (1979), J.Lowndes (1980), D.J. Benney (1980), W.J.Timson (1980), C.G.Ngan (1982), G.F.Telezke (1982), L.M.Pismen (1982), A.Nir (1982), V.V.Pukhnachev (1982), V.A.Solonnikov (1982), P.-G. de Gennes (1983), V.M.Starov (1983), P.Bach (1985), O.Hassager (1985), K.M.Jansons (1985), R.G.Cox (1986), R.Léger (1986), D.Kröner (1987), J.-F.Joanny (1987), J.N.Tilton (1988), P.A.Durbin (1989), C.Baiocchi (1990), P.Sheng (1990), M.Zhou (1990), W.Boender (1991), A.K.Chesters (1991), A.J.J. van der Zanden (1991), P.J.Haley (1991), M.J.Miksis (1991), D.Li (1991), J.C.Slattery (1991), G.M.Homsy (1991), P.Ehrhard (1991), Y.D.Shikhmurzaev (1991), F.Brochard-Wyart (1992), M.P.Brenner (1993), A.Bertozzi (1993), D.Anderson (1993), R.A.Hayes (1993), L.W.Schwartz (1994), H.-C.Chang (1994), J.R.A.Pearson (1995), M.K.Smith (1995), R.J.Braun (1995), D.Finlow (1996), A.Bose (1996), S.G.Bankoff (1996), I.B.Bazhlekov (1996), P.Seppecher (1996), E.Ramé (1997), R.Chebbi (1997), R.Schunk (1999), N.G.Hadjconstantinou (1999), H.Gouin (10999), Y.Pomeau (1999), P.Bourgin (1999), M.C.T.Wilson (2000), D.Jacqmin (2000), J.A.Diez (2001), M.&Y.Renardy (2001), L.Kondic (2001), L.W.Fan (2001), Y.X.Gao (2001), R.Golestanian (2001), E.Raphael (2001), A.O’Rear (2002), K.B.Glasner (2003), X.D.Wang (2003), J.Eggers (2004), V.S.Ajaev (2005), C.A.Phan (2005), P.D.M.Spelt (2005), J.Monnier (2006) ‘Moving Contact Line Problem’
21
r Pasandideh-Fard et al 1996 Dynamic Contact Angle Required as a boundary condition for the free surface shape. r t
22
Speed-Angle Formulae R σ1σ1 σ 3 - σ 2 Young Equation Dynamic Contact Angle Formula ) U Assumption: A unique angle for each speed
23
Capillary Rise Experiments
25
Physics of Dynamic Wetting Make a dry solid wet. Create a new/fresh liquid-solid interface. Class of flows with forming interfaces. Forming interface Formed interface Liquid-solidinterface Solid
26
Relevance of the Young Equation R σ 1e σ 3e - σ 2e Dynamic contact angle results from dynamic surface tensions. The angle is now determined by the flow field. Slip created by surface tension gradients (Marangoni effect) θeθe θdθd Static situationDynamic wetting σ1σ1 σ 3 - σ 2 R
27
In the bulk: On liquid-solid interfaces: At contact lines: On free surfaces: Interface Formation Model θdθd e2e2 e1e1 n n f (r, t )=0 Interface Formation Modelling
28
Comparison With Experiments Perfect wetting (Hoffman 1975; Ström et al. 1990; Fermigier & Jenffer 1991) Partial wetting (□: Hoffman 1975; : Burley & Kennedy 1976; ,, : Ström et al. 1990) The theory is in good agreement with all experimental data published in the literature.
30
Graded Mesh – For Both Models
31
Arbitrary Lagrangian-Eulerian (Free surface nodes follow the fluid’s path; bulk’s don’t)
32
Oscillating Drops: Code Validation For Re=100, f2 = 0.9
33
Oscillating Drops: Code Validation a b
35
Impact at Different Scales Millimetre Drop Microdrop Nanodrop
36
Pyramidal (mm-sized) Drops Experiment Renardy et al.
37
Microdrop Impact
38
Microdrop Impact and Spreading Velocity Scale Pressure Scale
39
Typical Microdrop Experiment (Dong et al 07) ? ?
40
Recovering Hidden Information
42
Periodically Patterned Surfaces No slip – No effect.No slip – No effect.
43
Interface Formation vs Molecular Dynamics Solid 2 less wettable Qualitative agreement
44
Surfaces of Variable Wettability 1 1.5
45
Flow Control on Patterned Surfaces
47
Capillary Rise
48
Flow Characteristics
49
‘Hydrodynamic Resist’
52
Dynamic Wetting Models Washburn Model Basic Dynamic Wetting Models Interface Formation Model and Experiments Meniscus shape unchanged by dynamic wetting Meniscus shape dependent on speed of propagation. Meniscus shape influenced by geometry Equilibrium Dynamic Equilibrium Dynamic Equilibrium Dynamic Meniscus
53
Wetting Fronts Propagating Through Porous Media
54
Wetting Fronts in Porous Media Threshold ModeWetting Mode Wetting Front
55
Capillary Rise through Packed Beads Circles: Experimental data from Delker et al 1996 Line: Developed theory ) z Washburnian z (cm) t (s) Non- Washburnian
56
Flow over a Porous Substrate
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.