Download presentation
1
Nuclear Structure Physics at 4GLS
Norbert Pietralla Institut für Kernphysik Darmstadt University of Technology TUD Collaborative Research Center SFB634 Research Center of Excellence Nuclear and Radiation Physics TUD Professor Dr. Norbert Pietralla TU Darmstadt
2
Vision of Nuclear Physics
Understanding the properties of heavy atomic nuclei from their basic constituents, quarks and gluons, and from the interactions between them. Professor Dr. Norbert Pietralla TU Darmstadt
3
Professor Dr. Norbert Pietralla TU Darmstadt
Relevance Deductive understanding of Nature Solid understanding of the nucleus as a laboratory for other fields (standard model, neutrino physics, strongly interacting many-body Fermi-systems…) Dynamics of cosmic objects and the “Origin of the Elements“ (astrophysics, nuclear astrophysics) Professor Dr. Norbert Pietralla TU Darmstadt
4
Professor Dr. Norbert Pietralla TU Darmstadt
Recent Progress Systematic derivation of structural form of nucleon-nucleon interaction from QCD in Chiral Perturbation Theory Unique low-energy NN-potential Vlow-k from Renormalization Group approach Non-perturbative all-order calculations from self-consistent iteration methods for nuclear many-body systems Advanced many-body techniques, e.g., No-Core Shell Model, Monte-Carlo Shell Model,… Professor Dr. Norbert Pietralla TU Darmstadt
5
Professor Dr. Norbert Pietralla TU Darmstadt
Once the atomic nucleus is formed effective (in-medium) forces can generate simple pattern. shell structure: valence nucleons Cooper pairing: N s,d boson system Collective motion: nuclear shapes Professor Dr. Norbert Pietralla TU Darmstadt
6
Professor Dr. Norbert Pietralla TU Darmstadt
Outline Nuclear physics with low-energy photons (nuclear dipole physics) Impact of photon beams from Laser Compton Backscattering Recent progress at Duke‘s HIS Research potential of -ray beams from Laser Compton Backscattering Summary Professor Dr. Norbert Pietralla TU Darmstadt
7
Nuclear Structure Physics with low-energy photon beams
Pure EM-interaction (nuclear-) model independent “small“ cross sections, thick targets Minimum projectile mass min. angular momentum transfer, spin-selective: dipole-modes Polarisation “Parity physics“ Professor Dr. Norbert Pietralla TU Darmstadt
8
Role of Isovector Spin-flip M1 excitations in Nuclear Physics
(MeV) Nucleon-Spin-flip Quark-Spin-flip Professor Dr. Norbert Pietralla TU Darmstadt
9
Electric Giant Dipol Resonance (GDR)
Protons Neutrons E1 GDR in 197Au GDR-Strength vs A Sensitive to average Proton-Neutron-Restoring Force but insensitive to shell structure: need low-energy E1/M1 data ! Professor Dr. Norbert Pietralla TU Darmstadt Data from: A.Bohr, B.Mottelson “Nuclear Structure”
10
Photonuclear Reactions
Separation threshold Absorption ´ ´ A´Y gs AX Nuclear Resonance Fluorescence (NRF) Photoactivation Photodesintegration (-activation) Professor Dr. Norbert Pietralla TU Darmstadt
11
Professor Dr. Norbert Pietralla TU Darmstadt
Traditionally Bremsstrahlung: Kneissl,Pietralla,Zilges, J.Phys.G 32, R217 (2006). Professor Dr. Norbert Pietralla TU Darmstadt
12
Overview: dipole modes
Spin M1 Strength Exotic Modes Orbital M1 Strength Scissors mode,… B(M1) Professor Dr. Norbert Pietralla TU Darmstadt
13
Scissors Mode in Deformed Nuclei (Darmstadt, 1983)
classically: current loop => M1 magnetic dipole excitation electron scattering photon scattering Bohle et al., NPA 458, 205 (1986). Professor Dr. Norbert Pietralla TU Darmstadt
14
M1 phenomena in the nuclear valence shell
Collectivity of the Scissors Mode Richter, Kneissl, von Brentano et al. Stuttgart-Darmstadt-Köln Measure of quadrupole collectivity 1+ 2+ E2 M1 N. Pietralla et al., PRC 58, 184 (1998) Professor Dr. Norbert Pietralla TU Darmstadt
15
S-DALINAC facility at IKP TU Darmstadt
1 2 i 1 2 Photon Experiments 10 MeV Injector: Photon Scattering / Photofission < 30 MeV Tagger: Photodesintegration / Photon Scattering Source 130 MeV Electron LINAC Electron Source Professor Dr. Norbert Pietralla TU Darmstadt
16
Darmstadt Low-Energy Photon Scattering Site at S-DALINAC
A.Zilges E < 10 MeV Target Ge(HP) g-detectors Radiator target e- g Energie Intensity Electrons Bremsstrahlung Cu Cu < 10 MeV Professor Dr. Norbert Pietralla TU Darmstadt
17
Professor Dr. Norbert Pietralla TU Darmstadt
18
Is this really all E1 strength ?
Systematics of the Pygmy Dipole Resonance Concentration around 5-7 MeV Strong fragmentation Summed strength: Scaling with N/Z ? Is this really all E1 strength ? A. Zilges et al., PLB 542 (2002) 43. S. Volz et al., NPA 779 (2006) 1. A. Zilges, contrib. to Vico Equense 07. Professor Dr. Norbert Pietralla TU Darmstadt
19
Professor Dr. Norbert Pietralla TU Darmstadt
Parity Measurements Principle of a Compton-Polarimeter Professor Dr. Norbert Pietralla TU Darmstadt
20
Modest polarisation sensitivity Better use polarized -ray beams !
Professor Dr. Norbert Pietralla TU Darmstadt
21
Parity Measurements with Linearly Polarized Photon Beams
Azimuthal asymmetry → parity quantum no. Professor Dr. Norbert Pietralla TU Darmstadt
22
Professor Dr. Norbert Pietralla TU Darmstadt
23
Professor Dr. Norbert Pietralla TU Darmstadt
24
Professor Dr. Norbert Pietralla TU Darmstadt
25
Professor Dr. Norbert Pietralla TU Darmstadt
26
Professor Dr. Norbert Pietralla TU Darmstadt
27
Professor Dr. Norbert Pietralla TU Darmstadt
28
Professor Dr. Norbert Pietralla TU Darmstadt
HIgS Beam Profile Professor Dr. Norbert Pietralla TU Darmstadt
29
Testing shell structure from M1 Spin-flip excitation
Professor Dr. Norbert Pietralla TU Darmstadt
30
Professor Dr. Norbert Pietralla TU Darmstadt
31
First ever observation of a 1+ state of 40Ar
Professor Dr. Norbert Pietralla TU Darmstadt
32
Professor Dr. Norbert Pietralla TU Darmstadt
Duke-Stony Brook expt. high-pressure Ar gas HIgS polarized g-beam 7.7 MeV < E < 11 MeV analyzing power 50% Duke – Stony Brook data (2 examples) Professor Dr. Norbert Pietralla TU Darmstadt
33
Professor Dr. Norbert Pietralla TU Darmstadt
T.C.Li, NP et al, Phys.Rev.C (2006). Professor Dr. Norbert Pietralla TU Darmstadt
34
Astrophysical Relevance of M1 Data
Langanke et al., PRL (2004). Neutrino-cross sections Darmstadt data 54Fe Professor Dr. Norbert Pietralla TU Darmstadt
35
Professor Dr. Norbert Pietralla TU Darmstadt
Direct Measurement of B(GT) from Charge-Exchange Reactions Osaka-data Fujita et al., PRL(2005). Adachi et al.,PRC (2006). Professor Dr. Norbert Pietralla TU Darmstadt
36
250 keV Thermionic Electron Gun
Polarized Beams 100 keV Polarized Electron Gun 250 keV Thermionic Electron Gun 10 MeV Injector To Experimental Hall 5 m Spatial restriction – transport of accelerator equipment Professor Dr. Norbert Pietralla TU Darmstadt
37
S-DALINAC Polarized INjector (SPIN)
Preparation system Polarized electron gun Differential pumping stages Injector cryostat Prebuncher system Chopper Mott polarimeter Wien filter 1 m Red Hall Entrance Thermionic electron gun Injector cryostat 2 m From Gun Laser Design of polarized injector beam line finished (Prof.Dr.J.Enders) Installation begins – middle of 2007 Professor Dr. Norbert Pietralla TU Darmstadt
38
Polarization in the entrance channel
Linear polarization (HIS) spin/parity program (since 2001) Circular polarization (HIS, S-DALINAC) parity non-conservation 20Ne, 238U bremstarget target e- g Forward-backward asymmetry ? Parity-violation Weak interaction circular -θ θ Eg bremsstrahlung spectrum Ng Pg ≤ 75% Professor Dr. Norbert Pietralla TU Darmstadt
39
The 20Ne case: parity mixing of yrast levels
20F, T< = 1 1- 1+ 3+ 4+ 5+ 2+ p(d5/21)n(d5/23) gs ΔE=7.5±5.7 keV “enhancement factor” 670 ± 7000 Γ(1-) ≤ 0.3 keV Γ(1+) ? 1+ 1- 11270±5 11262±3 20Ne 0+ T=1 isobaric analog states Goal: measure parity violation in simple states ! Understand effects of weak interaction microscopically ► e.g., study the parity doublet in 20Ne ! T<=0 Professor Dr. Norbert Pietralla TU Darmstadt
40
Generic Aspects of Nuclear Structure
Heavy Atomic nucleus Two-fluid quantum system many-body system COLLECTIVITY quantum system SHELL STRUCTURE consists of two equivalent entities (protons-neutrons) ISOSPIN SYMMETRY Coexist, interplay, and compete? Study collective proton-neutron valence shell excitations ! (combine all 3 aspects) Professor Dr. Norbert Pietralla TU Darmstadt
41
Professor Dr. Norbert Pietralla TU Darmstadt
From US-NSAC-charge: “Nuclear Physics with the Rare Isotope Accelerator” Themes and challenges of Modern Science Complexity out of simplicity How the world, with all its apparent complexity and diversity can be constructed out of a few elementary building blocks and their interactions Simplicity out of complexity How the world of complex systems can display such astonishing regularity and simplicity Understanding the nature of the physical universe Manipulating nature for the benefit of mankind Nuclei: Two-fluid, many-body, strongly-interacting, quantal systems provide wonderful laboratories for frontier research in all four areas Professor Dr. Norbert Pietralla TU Darmstadt
42
Professor Dr. Norbert Pietralla TU Darmstadt
Summary Nuclear structure physics with -ray beams is a vivid field with high discovery potential 4GLS can become a major facility in this field Needs: - energy-tunable, high-flux, polarized -ray beam from LASER-Compton backscattering All this is possible at 4GLS ! Professor Dr. Norbert Pietralla TU Darmstadt
43
Professor Dr. Norbert Pietralla TU Darmstadt
44
Die Valenz-Proton-Neutron Wechselwirkung
Bestimmt die Entwicklung von Kollektivitaet und Kerndeformation Bildet die mikroskopische Grundlage fuer Deformations- Phasen-Uebergangsverhalten (Federman-Pittel Mechanismus) Bewirkt Besetzungszahlabhaengigkeit von Einteilchen-Energien, Energieluecken und Schalenstruktur Professor Dr. Norbert Pietralla TU Darmstadt
45
MSSs* at the analytical Limits
Np = N =1 0+ 4+ 2+ 1+ 3+ U(5) Vibrator Fmax-1 MS multi-Phonon structure SU(3) Rotor 3+ 2+ 1+ 2+ K=1 0+ 4+ Scissors Mode 2+ A. Richter et al. TU Darmstadt, 1983 N.Pietralla et al. Univ.zu Koeln, 1999 0+ * MSSs = proton-neutron Mixed-Symmetry States Professor Dr. Norbert Pietralla TU Darmstadt
46
Professor Dr. Norbert Pietralla TU Darmstadt
Proton-Neutron symmetrische und gemischt-symmetrische Valenzraumanregungen (schematisch/geometrisch) Deformierter Kern Rotation Sphaerischer Kern Vibration Protonen-Neutronen ausser Phase Scherenmode Protonen-Neutronen ausser Phase Gem.-sym. Vibration Professor Dr. Norbert Pietralla TU Darmstadt Animation: Robert Casperson (Yale)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.