Download presentation
Presentation is loading. Please wait.
Published byEddy Ordiway Modified over 10 years ago
1
Evaluating the utility of gravity gradient tensor components Mark Pilkington Geological Survey of Canada
2
Tensor component choice Txx TxyTxz Tyz Tyy Tzz Single components Combinations Concatenations Which to use? Qualitative interpretation Quantitative interpretation
3
Tensor component choice Quantitative interpretation [Inversions] (T xx, T xy, T xz, T yy, T yz )Li, 2001 (T uv, T xy ), T zz Zhdanov et al., 2004 (T xz, T yz, T zz, T uv )Droujinine et al., 2007 (T uv, T xy )Li, 2010 (T uv, T xy ), T zz, (T zz, T uv, T xy )Martinez & Li, 2011 T zz, (T xz, T yz, T zz), (T xz, T yz, T xz, T yy, T xx )Martinez et al., 2013 Rating the solutions: goodness of fit sharp/smooth close to geology
4
Inversion versus component combinations Martinez et al., 2013 T zz T xz, T yz, T zz T xz, T yz, T xz, T yy, T xx T xz, T yz, T xz, T zz, T yy, T xx Components inverted: RMS error Txx Txy Txz Tyy Tyz Tzz 1-C 23.9 23.2 31.8 23.1 26.1 16.5 3-C 17.5 16.0 15.9 16.0 12.4 22.5 5-C 16.6 12.6 16.3 15.8 12.2 24.3 6-C 15.7 13.0 17.9 13.8 13.8 21.4
5
Outline Aim: quantitative rating of component/combinations Approach: inversion using a simple model – estimate parameter errors Method: linear inverse theory – analyse model/data relations
6
Inversion method used Inversion Parametric [underdetermined inversion problem] n data m parametersm >> nm << n Model3-D volumeSpecified shape quantity SolutionPhysical propertyParameters (density …) (depth, dip…) MethodologyRegularized inversionOverdetermined least – squares SolutionResolution, covarianceParameter errors appraisal
7
Prism model z t b w xc yc
8
Inverse theory Forward problem: b = f (x) b = data x = parameters (linearized)db = Adx A = Jacobian [ model dependent ] a ij = db i /dx j Inverse problem : dx = A + db A = U V T singular value decomposition
9
Inverse theory A = U V T singular value decomposition U = data eigenvectors V = parameter eigenvectors = singular values R = VV T Resolution matrix (=I) S = UU T Data information matrix C = C d V -2 V T Covariance matrix
10
Model parameter errors C = C d V -2 V T Parameter covariance matrix C d = Data covariance = singular values small large C large small C C d = e 2 I Equal data error C d = DVariable data error
11
Variable component errors Components have different error levels: e.g., e(T xx ) = e(T xz ) only relative levels required estimate based on FFT or equivalent source method ratio Tzz : Txz, Tyz : Txy : Txx, Tyy = 1 : 0.70 : 0.37 : 0.59 Component quantities are combined: e.g., H1 = sqrt (T xz 2 +T yz 2 ) combine errors: e(Tuv) = [0.5 (e(T xx ) 2 +e(T yy ) 2 )] 1/2
12
Component quantities tested Single components: T xx T yy T zz T xy T yz T xz T uv Invariants: I1 = T xx T yy +T yy T zz +T xx T zz -T xy 2 -T yz 2 -T xz 2 I2 = T xx (T yy T zz -T yz 2 )+T xy (T yz T xz -T xy T zz )+T xz (T xy T yz -T xz T yy ) H1 = sqrt (T xz 2 +T yz 2 ) H2 = sqrt [T xy 2 +0.25(T yy -T xx ) 2 ] Concatenations: (T uv, T xy ) (T xz, T yz, T zz) (T xy, T yz, T xz) (T xx, T yy, T xy) (T xz, T yz, T xz, T xy, T xx ) (T yy, T yz, T xz, T xy, T xx )
13
Inversion tests Procedure: Specify model and evaluate matrix A [db=Adx] Calculate covariance matrix C Get parameter standard deviations (p.s.d.) Rank p.s.d. for each parameter versus component quantity Models tested: xc yc z t w b
14
Eigenvector matrix V
15
Invariants: I1 = TxxTyy+TyyTzz+TxxTzz-Txy 2 -Tyz 2 -Txz 2 I2 = Txx(TyyTzz-Tyz 2 )+Txy(TyzTxz-TxyTzz) +Txz(TxyTyz-TxzTyy) H1 = sqrt(Txz 2 +Tyz 2 ) H2 = sqrt[Txy 2 +0.25(Tyy-Txx) 2 ]
16
Eigenvector matrix V
17
Correlation matrix corr ij = cov ij [ cov ii cov jj ] 1/2
18
Parameter errors xc,yc = location z = depth t = thickness w = width b = breadth = density
19
Parameter errors xc,yc = location z = depth t = thickness w = width b = breadth = density
20
Parameter errors xc,yc = location z = depth t = thickness w = width b = breadth = density
21
Parameter error ranking [29 models] error high low
22
Parameter errors versus averaging No averaging correction With averaging correction
23
Conclusions Concatenated components produce smallest parameter errors Invariants I1, I2 best performers in combined component category Purely horizontal components poor performers Tzz best single component
25
Parameter rankings I1T xz higher error
26
Width error versus coordinate rotation coordinate axis body axis
27
Information density matrix
28
Information density versus eigenvector
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.