Download presentation
Presentation is loading. Please wait.
1
G.7 Proving Triangles Similar
(AA~, SSS~, SAS~)
2
Similar Triangles Two triangles are similar if they are the same shape. That means the vertices can be paired up so the angles are congruent. Size does not matter.
3
AA Similarity (Angle-Angle or AA~)
If 2 angles of one triangle are congruent to 2 angles of another triangle, then the triangles are similar. Given: and Conclusion: by AA~
4
SSS Similarity (Side-Side-Side or SSS~)
If the lengths of the corresponding sides of 2 triangles are proportional, then the triangles are similar. Given: Conclusion: by SSS~
5
Example: SSS Similarity (Side-Side-Side)
5 11 22 8 16 10 Given: Conclusion: By SSS ~
6
SAS Similarity (Side-Angle-Side or SAS~)
If the lengths of 2 sides of a triangle are proportional to the lengths of 2 corresponding sides of another triangle and the included angles are congruent, then the triangles are similar. Given: Conclusion: by SAS~
7
Example: SAS Similarity (Side-Angle-Side)
5 11 22 10 Given: Conclusion: By SAS ~
8
A 80 D E 80 B C ABC ~ ADE by AA ~ Postulate Slide from MVHS
9
C 6 10 D E 5 3 A B CDE~ CAB by SAS ~ Theorem Slide from MVHS
10
L 5 3 M 6 6 K N 6 10 O KLM~ KON by SSS ~ Theorem Slide from MVHS
11
A 20 D 30 24 16 B C 36 ACB~ DCA by SSS ~ Theorem Slide from MVHS
12
L 15 P A 25 9 N LNP~ ANL by SAS ~ Theorem Slide from MVHS
13
Similarity is reflexive, symmetric, and transitive.
Proving Triangles Similar Similarity is reflexive, symmetric, and transitive. Steps for proving triangles similar: 1. Mark the Given. 2. Mark … Reflexive (shared) Angles or Vertical Angles 3. Choose a Method. (AA~, SSS~, SAS~) Think about what you need for the chosen method and be sure to include those parts in the proof.
14
AA Problem #1 Step 1: Mark the given … and what it implies
Step 2: Mark the vertical angles AA Step 3: Choose a method: (AA,SSS,SAS) Step 4: List the Parts in the order of the method with reasons Step 5: Is there more? Statements Reasons C D E G F Given Alternate Interior <s Alternate Interior <s AA Similarity
15
SSS Problem #2 Step 1: Mark the given … and what it implies
Step 2: Choose a method: (AA,SSS,SAS) Step 4: List the Parts in the order of the method with reasons Step 5: Is there more? Statements Reasons 1. IJ = 3LN ; JK = 3NP ; IK = 3LP Given Division Property Substitution SSS Similarity
16
SAS Problem #3 Step 1: Mark the given … and what it implies
Step 2: Mark the reflexive angles SAS Step 3: Choose a method: (AA,SSS,SAS) Step 4: List the Parts in the order of the method with reasons Next Slide…………. Step 5: Is there more?
17
Statements Reasons G is the Midpoint of H is the Midpoint of Given 2. EG = DG and EH = HF Def. of Midpoint 3. ED = EG + GD and EF = EH + HF Segment Addition Post. 4. ED = 2 EG and EF = 2 EH Substitution Division Property Reflexive Property SAS Postulate
18
Similarity is reflexive, symmetric, and transitive.
19
Choose a Problem. Problem #1 AA Problem #2 SSS Problem #3 SAS
End Slide Show Problem #1 AA Problem #2 SSS Problem #3 SAS
20
Problem #1 Given: DE || FG Prove: DEC ~ FGC
21
Step 1: Mark the Given Given: DE || FG Prove: DEC ~ FGC
… and what it implies Step 1: Mark the Given Given: DE || FG Prove: DEC ~ FGC
22
Step 2: Mark . . . Reflexive Angles Vertical Angles Given: DE || FG
Prove: DEC ~ FGC … if they exist.
23
Step 3: Choose a Method Given: DE || FG Prove: DEC ~ FGC AA SSS SAS
24
Given: DE || FG Prove: DEC ~ FGC STATEMENTS REASONS 3. DEC ~ FGC
25
Choose a Problem. Problem #1 AA Problem #2 SSS Problem #3 SAS
End Slide Show Problem #1 AA Problem #2 SSS Problem #3 SAS
26
Problem #2 Choose a Method Based on the given info AA SSS SAS
27
1. Given 2. Division Prop. 3. Substitution 4. SSS Similarity
STATEMENTS REASONS 1. Given 2. Division Prop. 3. Substitution 4. SSS Similarity
28
Choose a Problem. Problem #1 AA Problem #2 SSS Problem #3 SAS
End Slide Show Problem #1 AA Problem #2 SSS Problem #3 SAS
29
Problem #3 Given: G is the midpoint of ED H is the midpoint of EF
Prove: EGH~ EDF
30
Midpoint implies =/ @ segments Step 1: Mark the Given Given:
… and what it implies Step 1: Mark the Given Given: G is the midpoint of ED H is the midpoint of EF Prove: EGH~ EDF Midpoint implies =/ @ segments
31
Reflexive Angles Vertical Angles Step 2: Mark . . . Given:
G is the midpoint of ED H is the midpoint of EF Prove: EGH~ EDF
32
AA SSS SAS Step 3: Choose a Method Given: G is the midpoint of ED
H is the midpoint of EF Prove: EGH~ EDF AA SSS SAS
33
1. Given 2. Def. of Midpoint 3. Seg. Add. Post. 4. Substitution Given:
G is the midpoint of ED H is the midpoint of EF Prove: EGH~ EDF STATEMENTS REASONS 1. G is the midpoint of ED H is the midpoint of EF 1. Given 2. Def. of Midpoint 3. Seg. Add. Post. 4. Substitution
34
4. Substitution 5. Division Prop. = 6. Substitution 7. Reflexive Prop
STATEMENTS REASONS 4. Substitution 5. Division Prop. = 6. Substitution 7. Reflexive Prop 8. SAS Similarity
35
The End 1. Mark the Given. 2. Mark … Shared Angles or Vertical Angles
3. Choose a Method. (AA, SSS , SAS) **Think about what you need for the chosen method and be sure to include those parts in the proof.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.