Download presentation
Presentation is loading. Please wait.
Published byDarwin Holtby Modified over 10 years ago
1
1. (x) Ax > ( ∃ x) Bx 2. (x) ~Bx / ( ∃ x) ~Ax CQ of conclusion: ~(x) Ax CQ of line 2: ~ ( ∃ x) Bx 3. ~( ∃ x) Bx 4. ~(x) Ax
2
1. ( ∃ x) ~Ax v ( ∃ x) ~Bx 2. (x) Bx / ~(x) Ax 3. ~( ∃ x) ~BxCQ 2 4. ( ∃ x) ~Axcm, ds 1,3 5. ~ (x) Ax CQ 4
3
5) If all philosophers are either ethicists or metaphysicians, then there are no logicians. But Russell’s a logician, so some philosophers are not metaphysicians. 1. (x) (Px > (Ex v Mx)) > ~( ∃ x ) Lx 2. L r / ( ∃ x) (Px. ~Mx) 3. ( ∃ x) Lx EG 2 4. ~~( ∃ x) Lx DN 3 5. ~(x)(Px > (Ex v Mx))MT 4,1 6. ( ∃ x)~(Px > (Ex v Mx))CQ 5 7. ~(Pq > (Eq v Mq))EI 6 8. ~(~Pq v (Eq v Mq)IMP 7 9. Pq. ~(Eq v Mq)DM 8 10. Pq. (~Eq. ~Mq) DM 9 11. Pq. ~ MqCM, AS,SM 10 12. ( ∃ x) (Px. ~Mx)EG 11
4
7) All utilitarians are ethicists and all idealists are metaphysicians. Therefore, since it is not true that some ethicists are metaphysicians, it is not the case that some utilitarians are idealists. 1.(x) (Ux > Ex). (x) (Ix > Mx) 2. ~( ∃ x) (Ex. Mx)/ ~( ∃ x) (Ux. Ix) 3. (x) ~(Ex. Mx)CQ 2 4. ~(Ex. Mx) UI 3 5. Ux > ExSM, UI 1 6. Ix > MxCM, SM, UI 1 7. ~Ex v ~ MxDM 4 8. Ex > ~Mx IMP 7 9. Ux > ~Mx HS 5, 8 13. (x) ~ (Ux. Ix)CM, DM, UG 9 14. ~( ∃ x) (Ux. Ix)CQ 13 10. Mx > ~Ux TRAN 9 11. Ix > ~Ux HS 10, 6 12. ~Ix v ~UxIMP 11
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.