Presentation is loading. Please wait.

Presentation is loading. Please wait.

K-means and Gaussian Mixture Model 王养浩 2013 年 11 月 20 日.

Similar presentations


Presentation on theme: "K-means and Gaussian Mixture Model 王养浩 2013 年 11 月 20 日."— Presentation transcript:

1 K-means and Gaussian Mixture Model 王养浩 2013 年 11 月 20 日

2 Outline K-means Gaussian Mixture Model Expectation Maximum

3 K-means Gather data points to a few cohesive ‘Clusters’ Unsupervised Learning

4 K-means

5

6 Easy Fast Euclidean distance? K needs input ? Convergence ?

7 Determination of K Rule of Thumb : Elbow Method Cross Validation

8 K-means Convergence x (i) data points μ c(i) cluster centroids Coordinate descent

9 Coordinate Descent

10 K-means Convergence Non-circle Clusters

11 K-means Convergence Local minimum – The optimization object is non-convex

12 Gaussian Mixture Model Mixture of Gaussian distribution

13 Gaussian Mixture Model Log likelihood Maximum likelihood – Expectation Maximum

14 Expectation Maximum

15 Jenson inquality

16 Expectation Maximum

17 Construct lower bound

18 Expectation Maximum

19 Repeat until convergence

20 Generalized Expectation Maximum Difficulty in M-step

21 Summary K-means – Coordinate descent Gaussian Mixture Model – Expectation Maximum Expectation Maximum – MLE for models with latent variables – Generalized EM

22 Thanks!


Download ppt "K-means and Gaussian Mixture Model 王养浩 2013 年 11 月 20 日."

Similar presentations


Ads by Google