Download presentation
Presentation is loading. Please wait.
Published byEmily Morales Modified over 11 years ago
1
Karlston D'Emanuele Distance Vector Routing Protocols Notes courtesy of Mr. Joe Cordina Password Removed www.uniunderground.com
2
Karlston D'Emanuele Routing Information Protocol Routing Information Protocol (RIP) is an interior gateway protocol for use within a small autonomous system (RFC 1058) It supports two types of packets –Request: Instructs neighbouring devices for their distance vector table –Response: Sends the local distance vector table Sent every 30 seconds Sent in response to a request packet Sent in cases of triggered update support when there is a change in the local distance vector table
3
Karlston D'Emanuele Routing Information Protocol When a device receives a distance vector table, it is compared to the local one –If there is a lower cost route to a destination, the new route is used In LAN environments, RIP datagrams are sent using the MAC broadcast address and an IP network broadcast address In point-to-point networks, directed transmission is used RIP devices may be –Active: Advertise and Receive routing updates –Passive: They just receive routing updates.
4
Karlston D'Emanuele RIP Distance Vector Tables Each entry in the vector table contains –Destination Network –Cost (Distance) to reach this destination. This is usually in number of hops –IP address of next hop to reach destination At router initialisation, the vector table contains entries to directly connected networks with cost of 1. Also any static routes are included. When a table is received –Each paths cost is added to the cost of the link to the neighbouring router –Path of least cost is stored in local vector table
5
Karlston D'Emanuele RIP Distance Vector Example
6
Karlston D'Emanuele RIP Distance Vector Example
7
Karlston D'Emanuele Counting to Infinity With enough time, the distance vector table will contain information about all networks Yet during convergence, erroneous results might propagate through the networks Consider the example below when link between router B and D fails.
8
Karlston D'Emanuele Counting to Infinity Router A and C continue increasing their metric up to infinity. –Each claims to be able to reach destination network through the partner To avoid this, in RIP no metric can be larger than 16 hops –Disadvantage is that more than 15 hops to reach a destination network is considered invalid To avoid long convergence on topology changes two modifications to the RIP algorithm are –Split horizon –Triggered updates
9
Karlston D'Emanuele Split Horizon This dictates that one should never send information on an interface through which the information was learnt in the first place. The limitation is that each node must wait for the erroneous route to timeout (which is usually 3 minutes) –During this time, wrong information will be sent to other routers.
10
Karlston D'Emanuele Split Horizon with Poison Reverse This is an enhancement on Split Horizon, where all networks are advertised yet those which have been learnt through the specific interface will be advertised as unreachable on that interface. When a router learns a route which becomes unreachable, this route is immediately deleted from the local table. –This avoids propagation of erroneous routes Poison Reverse is useless when the network has no redundant links Major disadvantage is that the size of routing announcements are larger than split horizon advertisements.
11
Karlston D'Emanuele Triggered Updates This also aims to reduce convergence time Whenever a router changes the cost of a path, it immediately sends the new distance vector table to its neighbours Ensures that updates are propagated quickly
12
Karlston D'Emanuele RIP Limits The following disadvantages apply to RIP –Path cost limit due to the counting to infinity problem –Network-intensive table updates –Slow convergence unless triggered updates are used –No support for variable length subnet masking To tackle some of these limitations RIP-2 exists which supports the following: –CIDR and VLSM –Multicasting –Authentication –Back-Compatible to RIP-1 RIP-2 still has path-cost limit and slow convergence. In addition authentication is not very secure.
13
Karlston D'Emanuele Open Shortest Path First (OSPF) This is yet again another interior gateway protocol It has many enhancements over RIP which makes it the ideal choice for large networks –Equal Cost Load Balancing- allowing efficient load balancing –Logical Partitioning of Network – Limit advertisement of unnecessary subnet information –Support for authentication –Faster Convergence Time –Support for CIDR It is a link-state protocol
14
Karlston D'Emanuele Border Gateway Protocol BGP is an exterior gateway protocol
15
Karlston D'Emanuele Border Gateway Protocol BGP is a distance vector protocol It varies in the type of metric and also in giving attributes to each type of path –Well-known mandatory –Well-known discretionary –Optional Transitive –Optional Non-Transitive Preferences are assigned to each route BGP is partitioned into IBGP (located within an AS) and EBGP (those neighbours within different ASs) BGP uses TCP as its carrier
16
Karlston D'Emanuele Choosing of routing protocol The proper choice of routing protocol is very important. Selection depends on –Network complexity, –Size, and –Administrative Policies
17
Karlston D'Emanuele Choosing of routing protocol A number of design requirements have to be evaluated –Scalability to large environments: distance vector does not scale –Stability during Outages: Distance vector introduce instabilities during outage periods –Speed of Convergence: Triggered updates makes RIP equal to all the rest, yet they all still can be quite slow –Metrics: LS Algorithms use bandwidth to calculate routes, EIGRP can use network delays –Support for VLSM + use of Private Address Ranges –Vendor Interoperability –Ease of Implementation: Distance Vector the simplest to implement One might use static routes for small networks
18
Karlston D'Emanuele Security – PKI Picture courtesy of Deitel & Deitel
19
Karlston D'Emanuele Security – PKI Public Key Infrastructure –Public Key cryptography Used primary for authentication, data integrity and secret-key exchange It is asymmetric –Public and private key A message encrypted with the private key can only be decrypted with the public key
20
Karlston D'Emanuele Security – PKI Public Key Infrastructure –Digital Signatures Authenticates the senders identity The signatures is mathematically calculated on a plain text message Issued by trusted certification authorities (CAs)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.