Download presentation
Presentation is loading. Please wait.
Published byAndrew Braswell Modified over 10 years ago
1
Do Now Try to extend the following patterns. What would be next? 1.January, March, May …. 2.7, 14, 21, 28, …. 3.1, 4, 9, 16, …. 4.1, 6, 4, 9, 7, 12, 10, … July, September(Every other month) 35, 42(Multiples of 7) 25, 36(Perfect Squares. i.e. 1 2, 2 2, 3 2, 4 2 …) 15, 13, 18, 16(Add 5 then subtract 2)
2
2.1 Using Patterns and Inductive Reasoning Target Use inductive reasoning to identify patterns and make conjectures.
3
inductive reasoning conjecture Vocabulary
4
Find the next item in the pattern. Example 3: Identifying a Pattern In this pattern, the figure rotates 90° counter- clockwise each time. The next figure is.
5
Check It Out! Example 4 Find the next item in the pattern 0.4, 0.04, 0.004, … When reading the pattern from left to right, the next item in the pattern has one more zero after the decimal point. The next item would have 3 zeros after the decimal point, or 0.0004.
6
When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process of reasoning that a rule or statement is true because specific cases are true. You may use inductive reasoning to draw a conclusion from a pattern. A statement you believe to be true based on inductive reasoning is called a conjecture.
7
Complete the conjecture. Example 5: Making a Conjecture The sum of two positive numbers is ?. The sum of two positive numbers is positive. List some examples and look for a pattern. 1 + 1 = 23.14 + 0.01 = 3.15 3,900 + 1,000,017 = 1,003,917
8
Check It Out! Example 6 The product of two odd numbers is ?. Complete the conjecture. The product of two odd numbers is odd. List some examples and look for a pattern. 1 1 = 1 3 3 = 9 5 7 = 35
9
Example 7: Biology Application The cloud of water leaving a whale’s blowhole when it exhales is called its blow. A biologist observed blue-whale blows of 25 ft, 29 ft, 27 ft, and 24 ft. Another biologist recorded humpback- whale blows of 8 ft, 7 ft, 8 ft, and 9 ft. Make a conjecture based on the data. Heights of Whale Blows Height of Blue-whale Blows25292724 Height of Humpback-whale Blows 8789
10
Example 7: What conjectures can we make? Potential conjectures: The height of a blue-whale’s blow is greater than a humpback whale’s blow. -or- The height of a blue whale’s blow is about three times greater than a humpback whale’s blow. Heights of Whale Blows Height of Blue-whale Blows25292724 Height of Humpback-whale Blows 8789
11
Check It Out! Example 8 Make a conjecture about the lengths of male and female whales based on the data. In 5 of the 6 pairs of numbers above the female is longer. Conjecture: Female whales are longer than male whales. Average Whale Lengths Length of Female (ft) 495150485147 Length of Male (ft) 4745444648
12
To show that a conjecture is false, you have to find only one example in which the conjecture is not true. This case is called a counterexample. To show that a conjecture is always true, you must prove it. A counterexample can be a drawing, a statement, or a number.
13
Inductive Reasoning 1. Look for a pattern. 2. Make a conjecture. (use complete sentences) 3. Prove the conjecture or find a counterexample.
14
Lesson Quiz Find the next item in each pattern. 1. 0.7, 0.07, 0.007, … 2. 0.0007 Determine if each conjecture is true. If false, give a counterexample. 3. The quotient of two negative numbers is a positive number. 4. Every prime number is odd. 5. Two supplementary angles are not congruent. 6. The square of an odd integer is odd. false; 2 true false; 90° and 90° true
15
Adjustment to Homework Policy Homework that consists of answers only will receive a maximum of 5 points. Write given information/sketch picture for every problem. Show work on any problem requiring a calculation.
16
Assignment #11 Pages 85-88 Foundation: 7-19 odd, 22, 23, 27-31 odd (on 7-19, describe the pattern in words) Core: 36-43, 51 Challenge:54
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.