Download presentation
Presentation is loading. Please wait.
Published byShawna Hallum Modified over 10 years ago
1
Eager Markov Chains Parosh Aziz Abdulla Noomene Ben Henda Richard Mayr Sven Sandberg TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A
2
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Outline Introduction Expectation Problem Algorithm Scheme Termination Conditions Subclasses of Markov Chains Examples Conclusion
3
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Introduction Model: Infinite-state Markov chains Used to model programs with unreliable channels, randomized algorithms… Interest: Conditional expectations Expected execution time of a program Expected resource usage of a program
4
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Introduction Infinite-state Markov chain Infinite set of states Target set Probability distributions Example 0.3 0.2 0.5 1 1 0.1 0.9 0.70.3
5
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Introduction Reward function Defined over paths reaching the target set 0.3 0.2 0.5 1 1 0.1 0.9 0.70.3 Example 2 2 2 0 -3
6
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Expectation Problem Instance A Markov chain A reward function Task Compute/approximate the conditional expectation of the reward function
7
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Expectation Problem Example: The weighted sum The reachability probability The conditional expectation 1 0.8 0.1 1 1 1 2 2 0 -3 -5 0.8*4+0.1*(-5)=2.7 0.8+0.1=0.9 2.7/0.9=3
8
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Expectation Problem Remark Problem in general studied for finite-state Markov chains Contribution Algorithm scheme to compute it for infinite- state Markov chains Sufficient conditions for termination
9
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Algorithm Scheme At each iteration n Compute paths up to depth n Consider only those ending in the target set Update the expectation accordingly Path Exploration
10
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Algorithm Scheme Correctness The algorithm computes/approximates the correct value Termination Not guaranteed: lower-bounds but no upper- bounds
11
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Termination Conditions Exponentially bounded reward function The intuition: limit on the growth of the reward functions Remark: The limit is reasonable: for example polynomial functions are exponentially bounded
12
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Termination Conditions 0 The abs of the reward Bound on the reward
13
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Termination Conditions Eager Markov chain The intuition: Long paths contribute less in the expectation value Remark: Reasonable: for example PLCS, PVASS, NTM induce all eager Markov chains
14
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Termination Conditions 0 1 Prob. of reaching the target in more than n steps Bound on the probability
15
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Termination Conditions Pf Ws Ce
16
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Subclasses of Markov Chains Eager Markov chains Markov chains with finite eager attractor Markov chains with the bounded coarseness property NTM PVASS PLCS
17
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor Attractor: Almost surely reached from every state Finite eager attractor: Almost surely reached Unlikely to stay ”too long” outside of it A EA
18
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor EA 0 1 b Prob. to return in More than n steps
19
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor Finite eager attractor implies eager Markov chain?? Reminder: Eager Markov chain: Prob. of reaching the target in more than n steps
20
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor FEA Paths of length n that visit the attractor t times
21
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor Proof idea: identify 2 sets of paths Paths that visit the attractor often without going to the target set: Paths that visit the attractor rarely without going the target set:
22
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor Paths visiting the attractor rarely: t less than n/c FEA Pr_n
23
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Finite Eager Attractor Paths visiting the attractor often: t greater than n/c FEA PtPl Po_n
24
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Probabilistic Lossy Channel Systems (PLCS) Motivation: Finite-state processes communicating through unbounded and unreliable channels Widely used to model systems with unreliable channels (link protocol)
25
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS ab b Send c!a ab Receive c?b a c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop 1 2 1 1 1
26
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop 1 2 1 1 1 ab b Loss b b a a
27
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS Configuration Control location Content of the channel Example [q3,”aba”] c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop 1 2 1 1 1
28
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS A PLCS induces a Markov chain: States: Configurations Transitions: Loss steps combined with discrete steps
29
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS Example: [q1,”abb”] [q2,”a”] By losing one of the messages ”b” and firing the marked step. Probability: P=Ploss*2/3 c?b q0 q3q2 q1 nop c!a c!b aba Channel c nop 1 2 1 1 1
30
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PLCS Result: Each PLCS induces a Markov chain with finite eager attractor. Proof hint: When the size of the channels is big enough, it is more likely (with a probability greater than ½) to lose a message.
31
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Bounded Coarseness The probability of reaching the target within K steps is bounded from below by a constant b.
32
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Bounded Coarseness Boundedly coarse Markov chain implies eager Markov chain?? Reminder: Eager Markov chain: Prob. of reaching the target in more than n steps
33
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Bounded Coarseness Prob. Reach. Within K steps KnK steps 2K PnP2 Pn:Prob. of avoiding the target in nK steps P1
34
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Probabilistic Vector Addition Systems with states (PVASS) Motivation: PVASS are generalizations of Petri-nets. Widely used to model parallel processes, mutual exclusion program…
35
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS Configuration Control location Values of the variables x and y Example: [q1,x=2,y=0] q0 q3q2 q1 nop --x --y ++x ++y 1 2 ++x 1 4 1 1
36
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS A PVASS induces a Markov chain: States: Configurations Transitions: discrete steps
37
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS Example: [q1,1,1] [q2,1,0] By taking the marked step. Probability: P=2/3 q0 q3q2 q1 nop --x --y ++x ++y 1 2 ++x 1 4 1 1
38
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS Result: Each PVASS induces a Markov chain which has the bounded coarseness property.
39
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Noisy Turing Machines (NTM) Motivation: They are Turing Machines augmented with a noise parameter. Used to model systems operating in ”hostile” environment
40
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se NTM Fully described by a Turing Machine and a noise parameter. q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab
41
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se NTM q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab Discret Step ab#b#aab bb#b#aab
42
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se NTM q1 q3q2 q4 a/bb b # # RR R RR S S ab#b#aab Noise Step ab#b#aab #b#b#aab
43
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se NTM Result: Each NTM induces a Markov chain which has the bounded coarseness property.
44
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Conclusion Summary: Algorithm scheme for approximating expectations of reward functions Sufficient conditions to guarantee termination: Exponentially bounded reward function Eager Markov chains
45
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se Conclusion Direction for future work Extending the result to Markov decision processes and stochastic games Find more concrete applications
46
Thank you
47
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS Order on configurations: <= Same control locations Ordered values of the variables Example: [q0,3,4] <= [q0,3,5] q0 q3q2 q1 nop --x --y ++x ++y 1 2 ++x 1 4 1 1
48
Informationsteknologi Institutionen för informationsteknologi | www.it.uu.se PVASS Probability of each step > 1/10 Boundedly coarse: parameters K and 1/10^K q0 q3q2 q1 nop --x --y ++x ++y 1 2 ++x 1 4 1 1 Target set K iterations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.