Download presentation
1
4-5 Warm Up Lesson Presentation Lesson Quiz
Triangle Congruence: ASA and AAS Holt Geometry Warm Up Lesson Presentation Lesson Quiz
2
Do Now 1. What are sides AC and BC called? Side AB? 2. Which side is in between A and C? 3. Given DEF and GHI, if D G and E H, why is F I?
3
Objectives Apply ASA and AAS to construct triangles and to solve problems. Prove triangles congruent by using ASA and AAS.
4
Vocabulary included side
5
An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.
7
Example 1: Applying ASA Congruence
Determine if you can use ASA to prove the triangles congruent. Explain.
8
Example 2 Determine if you can use ASA to prove NKL LMN. Explain.
10
Example 3: Using AAS to Prove Triangles Congruent
Use AAS to prove the triangles congruent. Given: X V, YZW YWZ, XY VY Prove: XYZ VYW
11
Lesson Quiz: Part I Identify the postulate or theorem that proves the triangles congruent, or determine “not possible.” ASA not possible SAS or SSS
12
Congruence Postulates Extra Examples
SSS, ASA, SAS, AAS
13
1. Given: ÐA @ÐD AB @ DE ÐB @ ÐE.
ASA
14
2. Given: ÐE DF. AAS
15
3. Given: ÐE EF. ASA
16
4. Given: DF EF. SAS
17
5. Given: ÐF EF. AAS
18
6. Given: DE EF DF. SSS
19
7. Given: ÐC and ÐF are rt. Ðs AB @ DE
ÐD. AAS
20
8. Given: ÐC and ÐF are rt. Ðs AC @ DF
ÐE. AAS
21
9. Given: ÐE DF. AAS
22
10. Given: ÐC and ÐF are rt. Ðs
ÐE EF. ASA
23
11. Given: DE ÐE. ASA
24
12. Given: ÐF EF. AAS
25
13. Given: BC ^ AC EF ^ DF DE ÐE. AAS
26
14. Given: DE EF DF. SSS
27
15. Given: DF EF. SAS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.