Download presentation
Presentation is loading. Please wait.
Published byCarter Shepherd Modified over 11 years ago
1
IB Revision: Radians, Arcs, Sectors Relationship between radians and degrees: 0/360 ° 90 ° 180 ° 270 ° 0/2π ½ π π 3/2 π e.g. 1)45 ° = 2)60° = 3)300° = 4)20°= 5)182°=
2
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit 10 cm θ
3
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm 10 cm θ
4
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm 5 m θ
5
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 5 m θ
6
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 θ 1 km
7
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 θ 1 km
8
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 3 ft θ
9
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft 2 3 ft θ
10
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft 2 5 mm θ
11
IB Revision: Radians, Arcs, Sectors NameWhat we find FormulaUnit ArcLengthcm SectorAream2m2 SectorAreakm 2 SectorLengthft SegmentAreamm 2 5 mm θ
12
IB Revision: Radians, Arcs, Sectors Find the length of the minor arc Find the area of the sector
13
IB Revision: Radians, Arcs, Sectors
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.