Presentation is loading. Please wait.

Presentation is loading. Please wait.

Adding Multiple Forces that are not at right angles

Similar presentations


Presentation on theme: "Adding Multiple Forces that are not at right angles"— Presentation transcript:

1 Adding Multiple Forces that are not at right angles

2 The Ant applies 100N@2200 The Penguin 200N@2400 Jackie Chan 300N@3080
These three cartoon creatures are trying to pull a statue. Graphically find the resultant vector if: The Ant applies The Penguin Jackie Chan Which vector is which? Will it move, and which way will it go ? 90 180 270

3 For graphical vector addition to work, the arrows must be drawn at exactly the right angle using a protractor and must be drawn to scale (proportionally) using a ruler. Check this drawing with a ruler and protractor The Ant applies The Penguin Jackie Chan

4 Combining the vectors “tip to tail”, regardless of the order, gives us the resultant.
300N How can we graphically find how big this resultant is? 100N

5 Two dimensional forces must be summed up in the x direction alone, the y direction alone, then finally connected head to tail and added with the pythagorean theorem

6 Adding Multiple Forces that are not at right angles
2 Possible Strategies: Graphical method: 1. Draw the vectors to scale. 2. Connect the vectors head to tail. 3. Resultant goes from head of first to the tail of the last. Analytical method: 1. Use trigonometry to resolve all vectors into X and y components. 2. Add all the x vectors to each other., then add all the y vectors to each other. 3. Find the resultant with the Pythagorean Theorem.

7


Download ppt "Adding Multiple Forces that are not at right angles"

Similar presentations


Ads by Google