Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trade-offs: survival vs. reproduction

Similar presentations


Presentation on theme: "Trade-offs: survival vs. reproduction"— Presentation transcript:

1 Trade-offs: survival vs. reproduction
The cost of reproduction increase reproduction may decrease survival age at first reproduction investment per offspring number of reproductive cycles per lifetime Natural selection favors a life history that maximizes lifetime reproductive success

2 Parental survival Kestrel Falcons:
The cost of larger broods to both male & female parents

3 Reproductive strategies
K-selected late reproduction few offspring invest a lot in raising offspring primates coconut r-selected early reproduction many offspring little parental care insects many plants K-selected r-selected

4 Trade offs Number & size of offspring vs.
Survival of offspring or parent r-selected K-selected “Of course, long before you mature, most of you will be eaten.”

5 Life strategies & survivorship curves
25 1000 100 Human (type I) Hydra (type II) Oyster (type III) 10 1 50 Percent of maximum life span 75 Survival per thousand K-selection A Type I curve is flat at the start, reflecting low death rates during early and middle life, then drops steeply as death rates increase among older age groups. Humans and many other large mammals that produce few offspring but provide them with good care often exhibit this kind of curve. In contrast, a Type III curve drops sharply at the start, reflecting very high death rates for the young, but then flattens out as death rates decline for those few individuals that have survived to a certain critical age. This type of curve is usually associated with organisms that produce very large numbers of offspring but provide little or no care, such as long–lived plants, many fishes, and marine invertebrates. An oyster, for example, may release millions of eggs, but most offspring die as larvae from predation or other causes. Those few that survive long enough to attach to a suitable substrate and begin growing a hard shell will probably survive for a relatively long time. Type II curves are intermediate, with a constant death rate over the organism’s life span. This kind of survivorship occurs in Belding’s ground squirrels and some other rodents, various invertebrates, some lizards, and some annual plants. r-selection

6 Population growth change in population = births – deaths
Exponential model (ideal conditions) dN = riN dt growth increasing at constant rate N = # of individuals r = rate of growth ri = intrinsic rate t = time d = rate of change every pair has 4 offspring every pair has 3 offspring intrinsic rate = maximum rate of growth

7 Exponential growth rate
Characteristic of populations without limiting factors introduced to a new environment or rebounding from a catastrophe Whooping crane coming back from near extinction African elephant protected from hunting The J–shaped curve of exponential growth is characteristic of some populations that are introduced into a new or unfilled environment or whose numbers have been drastically reduced by a catastrophic event and are rebounding. The graph illustrates the exponential population growth that occurred in the population of elephants in Kruger National Park, South Africa, after they were protected from hunting. After approximately 60 years of exponential growth, the large number of elephants had caused enough damage to the park vegetation that a collapse in the elephant food supply was likely, leading to an end to population growth through starvation. To protect other species and the park ecosystem before that happened, park managers began limiting the elephant population by using birth control and exporting elephants to other countries.

8 Regulation of population size
marking territory = competition Limiting factors density dependent competition: food, mates, nesting sites predators, parasites, pathogens density independent abiotic factors sunlight (energy) temperature rainfall swarming locusts competition for nesting sites

9 Introduced species Non-native species kudzu
transplanted populations grow exponentially in new area out-compete native species loss of natural controls lack of predators, parasites, competitors reduce diversity examples African honeybee gypsy moth zebra mussel purple loosestrife gypsy moth kudzu

10 Zebra mussel reduces diversity
~2 months ecological & economic damage reduces diversity loss of food & nesting sites for animals economic damage

11 Purple loosestrife 1968 1978 reduces diversity
loss of food & nesting sites for animals

12 Logistic rate of growth
Can populations continue to grow exponentially? Of course not! no natural controls K = carrying capacity Decrease rate of growth as N reaches K effect of natural controls What happens as N approaches K?

13 Number of breeding male
Carrying capacity Time (years) 1915 1925 1935 1945 10 8 6 4 2 Number of breeding male fur seals (thousands) Maximum population size that environment can support with no degradation of habitat varies with changes in resources 500 400 300 200 100 20 10 30 50 40 60 Time (days) Number of cladocerans (per 200 ml) What’s going on with the plankton?

14 Changes in Carrying Capacity
Population cycles predator – prey interactions At what population level is the carrying capacity? K K

15 Human population growth
Population of… China: 1.3 billion India: 1.1 billion Human population growth adding 82 million/year ~ 200,000 per day! Doubling times 250m  500m = y () 500m  1b = y () 1b  2b = 80y (1850–1930) 2b  4b = 75y (1930–1975) 20056 billion Significant advances in medicine through science and technology What factors have contributed to this exponential growth pattern? Industrial Revolution The population doubled to 1 billion within the next two centuries, doubled again to 2 billion between 1850 and 1930, and doubled still again by 1975 to more than 4 billion. The global population now numbers over 6 billion people and is increasing by about 73 million each year. The population grows by approximately 201,000 people each day, the equivalent of adding a city the size of Amarillo, Texas, or Madison, Wisconsin. Every week the population increases by the size of San Antonio, Milwaukee, or Indianapolis. It takes only four years for world population growth to add the equivalent of another United States. Population ecologists predict a population of 7.3–8.4 billion people on Earth by the year 2025. Is the human population reaching carrying capacity? Bubonic plague "Black Death" 1650500 million

16 Distribution of population growth
uneven distribution of population: 90% of births are in developing countries 11 10 high fertility uneven distribution of resources: wealthiest 20% consumes ~90% of resources increasing gap between rich & poor 9 8 There are choices as to which future path the world takes… medium fertility 7 low fertility 6 World total World population in billions What is K for humans? 10-15 billion? the effect of income & education 5 4 Developing countries 3 2 1 Developed countries 1900 1950 2000 2050 Time

17 individual at standard of living of population
Ecological Footprint 30.2 15.6 6.4 3.7 3.2 2.6 USA Germany Brazil Indonesia Nigeria India Amount of land required to support an individual at standard of living of population 2 4 6 8 12 10 14 16 18 20 22 24 26 28 30 32 34 Acres over-population or over-consumption? uneven distribution: wealthiest 20% of world: 86% consumption of resources 53% of CO2 emissions A more comprehensive approach to estimating the carrying capacity of Earth is to recognize that humans have multiple constraints: We need food, water, fuel, building materials, and other requisites, such as clothing and transportation. The ecological footprint concept summarizes the aggregate land and water area appropriated by each nation to produce all the resources it consumes and to absorb all the waste it generates. Six types of ecologically productive areas are distinguished in calculating the ecological footprint: arable land (land suitable for crops), pasture, forest, ocean, built–up land, and fossil energy land. (Fossil energy land is calculated on the basis of the land required for vegetation to absorb the CO2 produced by burning fossil fuels.) All measures are converted to land area as hectares (ha) per person (1 ha = 2.47 acres). Adding up all the ecologically productive land on the planet yields about 2 ha per person. Reserving some land for parks and conservation means reducing this allotment to 1.7 ha per person—the benchmark for comparing actual ecological footprints. The graph is the ecological footprints for 13 countries and for the whole world as of We can draw two key conclusions from the graph. First, countries vary greatly in their individual footprint size and in their available ecological capacity (the actual resource base of each country). The United States has an ecological footprint of 8.4 ha per person but has only 6.2 ha per person of available ecological capacity. In other words, the U.S. population is already above carrying capacity. By contrast, New Zealand has a larger ecological footprint of 9.8 ha per person but an available capacity of 14.3 ha per person, so it is below its carrying capacity. The second conclusion is that, in general, the world was already in ecological deficit when the study was conducted. The overall analysis suggests that the world is now at or slightly above its carrying capacity.

18 Ecological Footprint deficit surplus
A more comprehensive approach to estimating the carrying capacity of Earth is to recognize that humans have multiple constraints: We need food, water, fuel, building materials, and other requisites, such as clothing and transportation. The ecological footprint concept summarizes the aggregate land and water area appropriated by each nation to produce all the resources it consumes and to absorb all the waste it generates. Six types of ecologically productive areas are distinguished in calculating the ecological footprint: arable land (land suitable for crops), pasture, forest, ocean, built–up land, and fossil energy land. (Fossil energy land is calculated on the basis of the land required for vegetation to absorb the CO2 produced by burning fossil fuels.) All measures are converted to land area as hectares (ha) per person (1 ha = 2.47 acres). Adding up all the ecologically productive land on the planet yields about 2 ha per person. Reserving some land for parks and conservation means reducing this allotment to 1.7 ha per person—the benchmark for comparing actual ecological footprints. The graph is the ecological footprints for 13 countries and for the whole world as of We can draw two key conclusions from the graph. First, countries vary greatly in their individual footprint size and in their available ecological capacity (the actual resource base of each country). The United States has an ecological footprint of 8.4 ha per person but has only 6.2 ha per person of available ecological capacity. In other words, the U.S. population is already above carrying capacity. By contrast, New Zealand has a larger ecological footprint of 9.8 ha per person but an available capacity of 14.3 ha per person, so it is below its carrying capacity. The second conclusion is that, in general, the world was already in ecological deficit when the study was conducted. The overall analysis suggests that the world is now at or slightly above its carrying capacity. Based on land & water area used to produce all resources each country consumes & to absorb all wastes it generates

19 Any Questions?

20 Measuring population density
How do we measure how many individuals in a population? number of individuals in an area mark & recapture methods Difficult to count a moving target sampling populations

21 Evolutionary adaptations
Coping with environmental variation regulators endotherms homeostasis (“warm-blooded”) conformers ectotherms (“cold-blooded”)

22 Bright blue marble spinning in space
Ecology

23 Studying organisms in their environment
biosphere ecosystem community population organism


Download ppt "Trade-offs: survival vs. reproduction"

Similar presentations


Ads by Google