Download presentation
Presentation is loading. Please wait.
Published byIrea Forbes Modified over 11 years ago
1
Active Learning Challenge http://clopinet.com/al Active Learning Challenge Isabelle Guyon (Clopinet, California) Gavin Cawley (University of East Anglia, UK) Olivier Chapelle (Yahhoo!, California) Gideon Dror (Academic College of Tel-Aviv-Yaffo, Israel) Vincent Lemaire (Orange, France) Amir Reza Saffari Azar (Graz University of Technology) Alexander Statnikov (New York University, USA)
2
Active Learning Challenge http://clopinet.com/al What is the problem?
3
Active Learning Challenge http://clopinet.com/al Labeling data is expensive $$ $$$$$
4
Active Learning Challenge http://clopinet.com/al Examples of domains Chemo-informatics Handwriting and speech recognition Image processing Text processing Marketing Ecology Embryology
5
Active Learning Challenge http://clopinet.com/al What is active learning?
6
Active Learning Challenge http://clopinet.com/al What is out there?
7
Active Learning Challenge http://clopinet.com/al Scenarios Burr Settles. Active Learning Literature Survey. CDTR 1648, Univ. Wisconsin – Madison. 2009.
8
Active Learning Challenge http://clopinet.com/al De novo queries De novo queries implicitly assume interventions on the system under study: not for this challenge
9
Active Learning Challenge http://clopinet.com/al Focus on pool-based AL Simplest scenario for a challenge. Training data: labels can be queried Test data: unknown labels Methods developed for pool-based AL should also be useful for stream-based AL.
10
Active Learning Challenge http://clopinet.com/al Example (a) Toy 2-class problem, 400 instances Gaussian distributed. (b) Linear logistic regression model trained w. 30 random instances. (c) Linear logistic regression model trained w. 30 actively queried instances using uncertainty sampling. Accuracy=0.7Accuracy=0.9 Burr Settles, 2009
11
Active Learning Challenge http://clopinet.com/al Learning curve Burr Settles, 2009
12
Active Learning Challenge http://clopinet.com/al Other methods Expected model change (greatest gradient if sample were used for training) Query by committee (query the sample subject to largest disagreement) Bayesian active learning (maximize change in revised posterior distribution) Expected error reduction (maximize generalization performance improvement) Information density (ask for examples both informative and representative) Burr Settles, 2009
13
Active Learning Challenge http://clopinet.com/al Datasets
14
Active Learning Challenge http://clopinet.com/al Data donors This project would not have been possible without generous donations of data: Chemoinformatics -- Charles Bergeron, Kristin Bennett and Curt Breneman (Rensselaer Polytechnic Institute, New York) contributed a dataset, which will be used for final testing.Kristin Bennett Embryology -- Emmanuel Faure, Thierry Savy, Louise Duloquin, Miguel Luengo Oroz, Benoit Lombardot, Camilo Melani, Paul Bourgine, and Nadine Peyriéras (Institut des systèmes complexes, France) contributed the ZEBRA dataset.Emmanuel Faure Handwriting recognition -- Reza Farrahi Moghaddam, Mathias Adankon, Kostyantyn Filonenko, Robert Wisnovsky, and Mohamed Chériet (Ecole de technologie supérieure de Montréal, Quebec) contributed the IBN_SINA dataset.Mohamed Chériet Marketing -- Vincent Lemaire, Marc Boullé, Fabrice Clérot, Raphael Féraud, Aurélie Le Cam, and Pascal Gouzien (Orange, France) contributed the ORANGE dataset, previously used in the KDD cup 2009.Vincent LemaireMarc BoulléKDD cup 2009 We also reused data made publicly available on the Internet: Chemoinformatics -- The National Cancer Institute (USA) for the HIVA dataset.The National Cancer Institute Ecology -- Jock A. Blackard, Denis J. Dean, and Charles W. Anderson (US Forest Service, USA) for the SYLVA dataset (Forest cover type).US Forest ServiceForest cover type Text processing -- Tom Mitchell (USA) and Ron Bekkerman (Israel) for the NOVA datset (derived from the Twenty Newsgroups).Ron BekkermanTwenty Newsgroups
15
Active Learning Challenge http://clopinet.com/al Development datasets
16
Active Learning Challenge http://clopinet.com/al Difficulties Spase data Missing values Unbalanced classes Categorical variables Noisy data Large datasets
17
Active Learning Challenge http://clopinet.com/al Final test datasets Will serve to do the final ranking Will be from the same domains May have different data representations and distributions No feed-back: the results will not be revealed until the end of the challenge
18
Active Learning Challenge http://clopinet.com/al Protocol
19
Active Learning Challenge http://clopinet.com/al Virtual Lab Joint work with: Constantin Aliferis, New York University Gregory F. Cooper, Pittsburg University André Elisseeff, Nhumi, Zürich Jean-Philippe Pellet, IBM Zürich Alexander Statnikov, New York University Peter Spirtes, Carnegie Mellon Virtual cash
20
Active Learning Challenge http://clopinet.com/al Step by step instructions 1.Predict 2.Sample 3.Submit a query 4.Retrieve the labels Download the data. You get 1 labeled example.
21
Active Learning Challenge http://clopinet.com/al Two phases Development phase: –6 datasets available –Can try as many times as you want –Matlab users can run queries on their computers –Others can use the labels (provided) Final test phase: –6 new datasets available –A single try –No feed-back
22
Active Learning Challenge http://clopinet.com/al Evaluation
23
Active Learning Challenge http://clopinet.com/al AUC score For each set of samples queried, we assess the predictions of the learning machine with the Area under the ROC curve.
24
Active Learning Challenge http://clopinet.com/al Area under the Learning Curve (ALC) Linear interpolation. Horizontal extrapolation. One queryFive queriesThirteen queries Lazy: ask for all labels at once
25
Active Learning Challenge http://clopinet.com/al Prizes 1 dataset: $100 2 datasets: $200 3 datasets: $400 4 datasets: $800 5 datasets: $1600 6 datasets: $3200! Plus travel awards for top ranking students. If you win on…
26
Active Learning Challenge http://clopinet.com/al Schedule
27
Active Learning Challenge http://clopinet.com/al Conclusion Try our new challenge, learn, and win!!!! –Workshops: AISTATS 2010, Sardinia, May, 2010 WCCI 2010 Workshop, Barcelona, July, 2010 Travel awards for top ranking students. –Proceedings published by JMLR & IEEE. –Prizes: P(i)=$100 * 2 (n-1) –Your problem solved by dozens of research groups: Help us organize the next challenge!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.