Presentation is loading. Please wait.

Presentation is loading. Please wait.

Description of Hadrons in the Tuebingen Chiral Quark Model Amand Faessler University of Tuebingen Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen + PhD.

Similar presentations


Presentation on theme: "Description of Hadrons in the Tuebingen Chiral Quark Model Amand Faessler University of Tuebingen Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen + PhD."— Presentation transcript:

1 Description of Hadrons in the Tuebingen Chiral Quark Model Amand Faessler University of Tuebingen
Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen + PhD students: Kuckei, Chedket, Pumsa-ard, Kosongthonkee, Giacosa, Nicmorus

2 The Perturbative Chiral Quark Model
Quantum Chromodynamic (QCD) with: (Approximate) Symmetries: P, C, T (exact) Global Gauge Invariance: (exact) for each flavor f

3 The Perturbative Chiral Quark Model
Conservation of the No quarks of flavor f: baryon number electric charge Third component of Isospin Strangeness Charme … (3) Approximate Flavor Sym. all the same (4) Approximate Chiral Sym. u, d / SU(2) Isospin

4 The Perturbative Chiral Quark Model
Conservation of the No quarks of flavor f: baryon number electric charge Third component of Isospin Strangeness Charme … (3) Approximate Flavor Sym. all the same (4) Approximate Chiral Sym. u, d / SU(2) Isospin

5 The Perturbative Chiral Quark Model
Chiral Symmetry: (The non-linear Sigma Model) Low energy effective Lagrangian with correct Symmetries: No Gluons (eliminated) No or with Quarks No Hadrons only: Chiral Perturbation Th. (many free parameters) With Perturbative Chiral Quark Model (PχQM)

6 The Perturbative Chiral Quark Model (Effective Lagrangian)
Chiral Perturbation Theory (cPT): Gluons eliminated Quarks eliminated Perturbative Chiral Quark Model (PχQM) Gluons eliminated With Quarks

7 The Perturbative Chiral Quark Model
SU(2) or: SU(3) Invariance under: Isospin

8 Chiral Invariant Lagrangian for the Quarks SU(2 or 3) Flavor

9 The Perturbative Chiral Quark Model
Mass (or scalar Poten.) ≠ 0: Gell-Mann (SU2: )

10 The Perturbative Chiral Quark Model
= scalar + pseudoscalar (1) Linear σ-Model: weak π decay const.

11 The Perturbative Chiral Quark Model
(2) Non-Linear σ-Model: SU(2): invariant since: Invariant Lagrangian: with Scalar- and Vector-Potential.

12 The Perturbative Chiral Quark Model
with: SU2: SU3:

13 The Perturbative Chiral Quark Model
Seagull Term

14 The Perturbative Chiral Quark Model
Current Algebra Relations Gell-Mann-Oaks-Renner relat.: Gell-Mann-Okubo relation: with:

15 The Perturbative Chiral Quark Model
NUCLEON Wave Functions and Parameters: Quark Wave Function: Potential:

16 The Perturbative Chiral Quark Model

17 The Perturbative Chiral Quark Model
The PION-NUCLEON Sigma Term: Gutsche, Lyubovitskij, Faessler; P. R. D63 (2001) PION-NUCLEON Scattering: time Weinberg-Tomozawa

18 The Perturbative Chiral Quark Model
QCD: Proton

19 The Perturbative Chiral Quark Model

20 Pion (Kaon, Eta)-Nucleon Sigma-Term

21 Pion-Nucleon Sigma Term in the Perturbative Chiral Quark Model
Tot. cPT 13 39 2.1 0.1 55 45(8) 1 12 .3 .02 14 15(.4) .1 1.4 .04 .002 1.5 1.6 85 256 40 4.5 386 395 28 33 4 69 9.4 96

22 Scalar Formfactor of the Nucleon and the Meson Cloud

23 The Perturbative Chiral Quark Model
Electromagnetic Properties of Baryons: + counter terms Tuebingen group: Phys. Rev. C68, (2003); Phys. Rev. C69, (2004) ….

24 Magnetic Moments and Electric and Magnetic Radii of Protons and Neutrons [in units of Nulear Magnetons and fm²] 3q loops Total Exp. 1.8 0.80 2.60 2.79 -1.2 -0.78 -1.98 -1.91 0.60 0.12 0.72 0.76 -.111 -.116 0.37 0.74 0.33 0.61 1.89 1.61

25 Helicity Amplitudes for N – D Transition at the Photon Point Q² = 0
3quarks -78.3 -135.6 Loops (ground q) -32.2 -55.7 (excited) -19.6 -33.9 Total -130 (3.4) -225 (6) Exp[10**(-3) GeV**(-1/2) -135 (6) -255 (8)

26 The Perturbative Chiral Quark Model

27 The Perturbative Chiral Quark Model

28 Strangeness in the Perturbative Chiral Quark Model
Proton

29 Strange Magnetic Moment and Electric and Magnetic Strange Mean Square Radii
Approach QCD Leinweber I -0.16 (0.18) QCD Leinweber II (0.021) QCD Dong -0.36 (0.20) -0,16 (0.20) CHPT Meissner 0.18 (0.34) (0.09) -0.14 NJL Weigel 0.10 (0.15) -0,15 (0.05) CHQSM Goeke 0.115 -0.095 0.073 CQM Riska -0.046 ~0.02 PCHQM (0.012) (0.003) 0.024 (.003)

30 Strangeness in the nucleon E. J. Beise et al. Prog. Part. Nucl. Phys
Strangeness in the nucleon E. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289 F. E. Maas et al. Phys. Rev. Lett. 94 (2005)

31 The Perturbative Chiral Quark Model
THEORY (Pert. χ Quark M) + SAMPLE + HAPPEX: Approach Gs (0.1) SAMP Gs (0,48) HAPP Gs ( ) MAMI χ PT Meissner Goeke Shyrme Riska PχQM Tuebingen Exp 0.23 ± 0.44 0.09 - 0.06 - (3.7±1.2) 10-2 0.14 ± 0.6 0.023 ± 0.048 fit 0.087 ± 0.016 - 0.08 (1.8±0.3) 10-3 0.025 ± 0.034 0.007 ± 0.127 0.14 ± 0.03 (2.9±0.5) 10-4 ? MIT CEBAF Mainz

32 Strangeness in the Nucleon
E. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289 § F. E. Maas et al. Phys. Rev. Lett. 94 (2005) * Approach Q²[GeV²/c²] Gs(0.1) SAMP § Gs(0.48) HAPP § Gs(0.23) Mainz* cPT Meissner 0.023 (0.44) 0.023 fit (0.048) 0.007 (0.127) Skyrme Goeke 0.09 0.087 (0.016) 0.14 (0.03) Riska -0.06 -0.08 PcQM -0.04 (0.01) 0.0018 (.0003) (.00005) EXP 0.23 § (0.76) .025 § (.034) *

33 Exp: Schumacher Prog. Part. Nucl. Phys. to be pub.55(2005)
Compton Scattering g + N -> g´+ N´ and electric a and magnetic b Polarizabilities of the Nucleon. Exp: Schumacher Prog. Part. Nucl. Phys. to be pub.55(2005)

34 Compton Scattering g + N -> g´+ N´ and electric a and magnetic b Polarizabilities.

35 Compton Scattering Diagrams for electric a and magnetic b Polarizabilities

36 Compton Scattering diagrams for Spin Polarizabilities g

37 Electric a and Magnetic b Polarizabilities of the Nucleon [10
Electric a and Magnetic b Polarizabilities of the Nucleon [10**(-4) fm^3] a(p,E) b(p,M) a(n,E) b(n,M) DATA 10**(-4) fm^3 Schumacher 12.0 (0.6) 1.9 12.5 (1.7) 2.7 (1.8) CHPT Meissner 7.9 -2.3 11.0 -2.0 Babusci 10.5 (2.0) 3.5 (3.6) 13.6 (1.5) 7.8 Hemmert 12.6 1.26 Lvov 7.3 -1.8 9.8 -0.9 PCQM Tuebingen 10.9 5.1 1.15

38 Electric and Magnetic Polarizabilities: Data and Theories

39 The Perturbative Chiral Quark Model
SUMMARY Theory of Strong Interaction: Effective Lagrangian with correct chiral Symmetry without Gluons with Quarks Perturbative Chiral Quark Model

40 The Perturbative Chiral Quark Model (Effective Lagrangian)
Chiral Perturbation Theory: Gluons eliminated Quarks eliminated Perturbative Chiral Quark Model (PχQM) Gluons eliminated With Quarks

41 Chiral Invariant Lagrangian for the Quarks SU(2 or 3) Flavor

42 The Perturbative Chiral Quark Model
(2) Non-Linear σ-Model: SU(2): invariant since: Invariant Lagrangian: with Scalar- and Vector-Potential.

43 The Perturbative Chiral Quark Model
Current Algebra With:

44 The Perturbative Chiral Quark Model

45 The Perturbative Chiral Quark Model
Effective Low Energy L Chiral symmetry: Goldstone Bosons (mPS = 0) Pseudo-Scalar Octet

46 The Perturbative Chiral Quark Model
Chiral Symmetry Breaking: Restore Symmetry:

47 The Perturbative Chiral Quark Model
Perturbation Theory around in powers of up to second order: Perturbative Chiral Quark Model: PχQM Parameters adjusted: Ansatz for Quark fct.: Gasser Leutwhyler

48 The Perturbative Chiral Quark Model
Two Parameters only: <r²>, g(A) Radii and Magnetic Moments of p, n Electric and Magnetic p,n Form factors Strangeness in N π-Nucleon-σ Term Electric and Magnetic Polarizabilities of the Nucleon The End

49 The Perturbative Chiral Quark Model
The danger of trouble counting in chiral Perturbation Theory (χPT) and in the perturbative chiral Quark Model (PχQM)

50 The Perturbative Chiral Quark Model
Covariance:


Download ppt "Description of Hadrons in the Tuebingen Chiral Quark Model Amand Faessler University of Tuebingen Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen + PhD."

Similar presentations


Ads by Google