Download presentation
Presentation is loading. Please wait.
Published bySelena Slaymaker Modified over 10 years ago
1
Modeling and Understanding of Blazar Sources Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera G. Bonnoli, A. Celotti, L. Foschini, G. Ghirlanda, L. Maraschi, F. Tavecchio With the help of: G. Bonnoli, A. Celotti, L. Foschini, G. Ghirlanda, L. Maraschi, F. Tavecchio
2
Fermi blazars
3
3 months, 10
7
Fossati et al. 1998; Donato et al. 2001
8
F =k F r P~10 -17 0.8 Ghirlanda+ 2010 20 GHz southern sources with F>40mJy: 3600 radio flat sources, 230 associations with Fermi blazars
9
F =k F r 0.8 Only 1/15 of the radio sources are detected by LAT Ghirlanda+ 2011
10
F =k F r Ghirlanda+ 2011 1 2 3: number Assume a slope and a dispersion ( -variability)
11
3 months, 10 BL Lacs Flat Steep FSRQs LLLL Fossati et al. 1998; Donato et al. 2001
12
11 months – 4 Abdo+ 2010 BL Lacs FSRQs
13
11 months – 4 Abdo+ 2010 Intruder BL Lacs?
14
0208- 512 11 months – 4 Scarpa & Falomo 1997 L MgII =1.75x10 44 erg/s EW=5A
15
When a BL Lac is a BL Lac? Usually, EW< 5A Easy, but not physical Better to measure L BLR But normalize it to L Edd
16
~5x10 -4 GG+ 2011
17
Sbarrato+ in prep SDSS+1LAC Do we really need to divide blazars?
18
TeV blazars
19
107 sources: 46 extragal + 61 gal http://www.mpp.mpg.de/~rwagner/sources/
21
Also FSRQs ! http://www.mpp.mpg.de/~rwagner/sources/
22
Also Radio-galaxies ! http://www.mpp.mpg.de/~rwagner/sources/
23
Also starbursts galaxies! http://www.mpp.mpg.de/~rwagner/sources/
24
Crab level ~15 Crab Aharonian et al. 2007 t var ~ 3-5 min !<< R S /c PKS 2155-304
25
10 4 t var ~ 10 4 M 9 seconds (3 h) 1/ RSRS d ~ 10 2 -10 3 R S ~ 2 R S R~d/ t var ~d/ 2 R s R s R s d=~ R S RsRs Internal shocks Blob
26
27
28
Jet in a jet
29
Needle (rifle)
30
GG+2009: needle Giannios +2009: jet in a jet by reconnection
31
GG+2009 Giannios +2009 For 2155-304: No strong disk, no severe cooling, e- can reach high energies
32
Aleksic+ 2011 – MAGIC 1222+216 z=0.432: a FSRQ! 10 min
33
Tavecchio+ 2011
34
GG+2009 Giannios +2009 For 1222+216: Strong disk, severe cooling, e- cannot reach high energies. Plenty of external seeds, no need to be inside the “normal” emitting region
35
GG+2009 Giannios +2009
36
Cosmic B-background
37
TeV no GeV Tavecchio+ 2010
38
blazar
39
LHC Reprocessed GeV intergalactic B Reprocessed GeV intergalactic B
40
~10 TeV ~10 GeV ~1 with IR bkg IC with CMB With no B-field A simplified view: see Neronov+ 2010; Tavecchio+ 2010 e+e-
41
~10 TeV ~10 GeV ~1 with IR bkg IC with CMB With no B-field Neronov+ 2010 – Tavecchio+ 2010
42
With B-field Neronov+ 2010 – Tavecchio+ 2010
43
Big blazars
44
Torus ~1-10 pc Broad Line Region ~0.2 pc Within R BLR U BLR = const Within R Torus U IR = const R BLR R Torus disk Big blazars Poutanen
45
Torus ~1-10 pc Broad Line Region ~0.2 pc ~VLBI region ~20 pc away (Marscher+) R BLR R Torus disk Lyutikov
46
M=2x10 9 UVOT XRT Fermi GG, Tavecchio & Ghirlanda 2009 Low energy synchro peak: leave the disk naked! torus disk X-ray corona synchro SSC EC
47
Blazars also present in SDSS (DR7) FWHM + estimate of R BLR
48
P r = radiation ~ L obs / 2 P e = relat. electrons P p = protons P B = B-field R jet power and accretion luminosity ~10 17 cm Shakura-Sunjaev disk: L d P jet = P e +P p +P B
49
P r ~ L obs / 2 ”model independent” P r is the absolute minimum of P jet P r =L d
50
P r ~ L d P r ~ Mc 2 L d ~ M 2 c 2 P r ~ L d 1/2
51
If one proton per emitting electron P j =L d
52
Pause P jet ~ Mc 2, even larger than L dP jet ~ Mc 2, even larger than L d For all M/M EddFor all M/M Edd BL Lacs ADAF FSRQs SSBL Lacs ADAF FSRQs SS L BLR /L Edd divides BL Lacs from FSRQsL BLR /L Edd divides BL Lacs from FSRQs Matter, not magnetic, dominatedMatter, not magnetic, dominated
53
When a massive and dormant BH wakes up
54
Burrows+ astro-ph/1104.4787 Swift/XRT 110328A = Swift 1644+57
55
Levan+ astro-ph/1104.3356 (30 mas) HST: < 150 pc from center (30 mas) VLBI: < 2.5 pc (0.5 mas, Atel 3269)
56
Levan+ astro-ph/1104.3356 A small starburst galaxy Total mass = 10 9 -10 10 M O M BH ~ 10 6 -10 7 M O z=0.3534
57
Burrows+ astro-ph/1104.4787 TNG
58
Burrows+ astro-ph/1104.4787 t -5/3 Swift/XRT 110328A = Swift 1644+57 Tidal disruption of a star + formation of a relativistic jet
59
TNG XRT Burrows+ astro-ph/1104/4787
60
Burrows+ astro-ph/1104.4787 F( ) ~ 1/3 A V =4.5
61
Burrows+ astro-ph/1104.4787 Particle-starved Poynting dominated P B ~10 46 erg/s Reconnection?
62
L=0.01 L Edd
63
1644+57? Late prompt in GRBs?
64
Conclusions Find why radio-quiet/radio-loud Find if it is BZ Find if jets are more efficient than accretion Marek, you now start your second half of your carrier: you cannot rest!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.