Presentation is loading. Please wait.

Presentation is loading. Please wait.

PERFORMANCE TESTING OF A LIQUID COOLED 5KW HIGH TEMPERATURE PEM FUEL CELL STACK SØREN JUHL ANDREASEN, ASSOCIATE PROFESSOR DEPARTMENT OF ENERGY TECHNOLOGY.

Similar presentations


Presentation on theme: "PERFORMANCE TESTING OF A LIQUID COOLED 5KW HIGH TEMPERATURE PEM FUEL CELL STACK SØREN JUHL ANDREASEN, ASSOCIATE PROFESSOR DEPARTMENT OF ENERGY TECHNOLOGY."— Presentation transcript:

1 PERFORMANCE TESTING OF A LIQUID COOLED 5KW HIGH TEMPERATURE PEM FUEL CELL STACK SØREN JUHL ANDREASEN, ASSOCIATE PROFESSOR DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY DENMARK sja@et.aau.dk

2 Presentation Outline Department of Energy Technology, Aalborg University High temperature PEM fuel cells Reformer system topologies Fuel cell stack testing methodology Experimental results Conclusions Future work

3 Department of Energy Technology, Aalborg University Founded 1974 Students :18.756 Staff : 4.000

4 Strategic Networks: EMSD CEES ECPE VE-NET DUWET WEST VPP REN-DK HUB NORTH Energy Sponsor Programme Fluid Power and Mechatronic Systems Fluid Mechanics and Combustion Electric Power Systems Power Electronic Systems Electrical Machines 70 VIP 80 PhD 25 Guest Researchers 15 Research Assistants 30 TAP Lab. Facilities: Power Electronics Systems Drive Systems Tests Fluid Power Power Systems & RTDS Micro Grid High Voltage DSpace PV Converter & Systems Laser Systems Fuel Cell Systems Battery Test EMC Vehicles Test Lab Biomass Conversion Facilities Proto Type Facilities Thermal Energy Systems Department of Energy Technology Smart Grids and Active Networks Wind Power Systems Fluid Power in Wind and Wave Energy Biomass Photovoltaic Systems Modern Power Transmission Systems Fuel Cell and Battery Systems Automotive and Industrial Drives Efficient and Reliable Power Electronics Thermoelectrics Green Buildings Multi-disciplinary Research Programmes Microgrids

5 High Temperature PEM Fuel Cells Advantages PBI-based MEAs have a high tolerance to CO A liquid fuel, such as methanol is accessible and storable Heat can be utilized in fuel conversion System energy density increase is ”cheap” Challenges System size and complexity increases Impurities are introduced System heat-up Different reformer system topologies using methanol reformers

6 Reformer system topologies using liquid cooling Parallell thermal connection Low temperature fuel cell stack cooling/heating system (160-180 o C) High temperature reformer cooling/heating system (230-300 o C) Burner running on anode waste gas adds heat to reforming process Fuel cell stack cathode air exhaust utilized for fuel evaporation

7 Reformer system topologies using liquid cooling Seriel thermal connection Cooler inserted to reduce temperature to stack level Burner increases temperature from fuel cell stack level to reformer level. Special fuel evaporator needed in order to properly exchange heat between various incoming flows.

8 Fuel cell stack 5kW Serenergy fuel cell stack 120 cells, 165 cm 2 Trial using Danish Power Systems MEAs Challenges: New MEA type Gaskets Coolant leaks Customized assembly

9 Experimental setup Greenlight G400 fuel cell test station 12 kW electronic load 500V,1000A Gas concentration, pressure, temperature, flow, dew point control of all inlets Water balance measurement External cooling cart for thermal oil temperature heating/cooling Integrated CVM (3rd party) Electrochemical characterization using EIS (under development for high voltage stack) Automation of reference performance test under various operating conditions. verified on 18 cell short stack.

10 Initial CVM Pure Hydrogen, ~165 o C Stack performance 81,6V - 16,3A – 1335W 75,5V – 33,0A – 2493W 70,2V – 49,5A – 3473W 65,8V – 66,8A – 4347W Slightly high variance in cell voltage: Max spread 56mV@49,5A

11 Several tests, storage time later 3 cells, critical cell reversal -1000mV 75,4V - 18A – 1358W 69,3V - 36A – 2496W

12 Several tests, storage time later 3 cells removed, thus 0V 76,8V - 18A – 1382WIncreased performance even with 3 cells missing 70,5V - 36A – 2539W

13 Stack start-up Start-up procedure: Avoid too high inlet collant pressure (viscosity of oil) Avoid too high temperature difference on stack Avoid too much liquid water in stack Avoid high potentials on stack to reduced CC

14 Stack operation Limited operation untill 160 degrees Enables additional ”electrochemical heating” Very stable stack voltage (only excursions are due to dynamic thermal test) Fast response to load changes Current limited by cooling system

15 Conclusions Successful trial of new MEA type in 5kW stack in fuel cell test station Load changes and thermal dynamics examined Many initial challenges overcome regarding implementation of new MEAs Stack assembly with new MEA thickness Leak proofing, gasket choice Cell reversal identified, cell removed and processed to further analysis in order to evaluate cause of failure: collant leak, membrane crack, gasket failure, stack assembly, internal short Automated testing procedure verified on short stack and ready for trial with full stack

16 Future work Rapid start-up Evaluation of shutdown proceedures, evaluating carbon corrosion on stack level System control strategy development Model based prediction of anode hydrogen availability Fuel cell stack and system diagnostics

17 Recent publications from the group Comparative study of the break in process of post doped and sol–gel high temperature proton exchange membrane fuel cells Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Araya, Samuel Simon; Kær, Søren Knudsen International Journal of Hydrogen Energy, Vol. 39, No. 27, 09.2014, p. 14959–14968 Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen Journal of Fuel Cell Science and Technology Vol. 11, No. 6, FC-14-1067, 12.2014 Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen International Journal of Hydrogen Energy Vol. 39, No. 32, 31.10.2014, p. 18343–18350 Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart; Jensen, Hans-Christian Becker; Kær, Søren Knudsen International Journal of Hydrogen Energy Vol. 39, No. 4, 22.01.2014, p. 1856-1863.Research - peer-review › Journal article Thermal modeling and temperature control of a PEM fuel cell system for forklift applications Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen; Mortensen, Henrik H. International Journal of Hydrogen Energy, Vol. 39, No. 16, 27.05.2014, p. 8410–8420. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart. International Journal of Hydrogen Energy, Vol. 38, No. 3, 06.02.2013, p. 1676-1684. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza. Journal of Fuel Cell Science and Technology, Vol. 11, No. 2, 04.12.2013. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune; Andreasen, Søren Juhl; Kær, Søren Knudsen I E E E Transactions on Vehicular Technology, Vol. 62, No. 1, 01.2013, p. 50-60 Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza; Ehmsen, Mikkel Præstholm; Andersen, John. In: International Journal of Hydrogen Energy, Vol. 38, No. 25, 21.08.2013, p. 10577-10584

18 Acknowledgements The authours would like to acknowledge the financial support from the EUDP program and the Danish Energy Agency Thank you for your attention!


Download ppt "PERFORMANCE TESTING OF A LIQUID COOLED 5KW HIGH TEMPERATURE PEM FUEL CELL STACK SØREN JUHL ANDREASEN, ASSOCIATE PROFESSOR DEPARTMENT OF ENERGY TECHNOLOGY."

Similar presentations


Ads by Google