Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wakefield Calculations and Impedance Database Challenges for the European XFEL Project at DESY Igor Zagorodnov ICFA mini-Workshop on “Electromagnetic wake.

Similar presentations


Presentation on theme: "Wakefield Calculations and Impedance Database Challenges for the European XFEL Project at DESY Igor Zagorodnov ICFA mini-Workshop on “Electromagnetic wake."— Presentation transcript:

1 Wakefield Calculations and Impedance Database Challenges for the European XFEL Project at DESY Igor Zagorodnov ICFA mini-Workshop on “Electromagnetic wake fields and impedances in particle accelerators“ Erice, Sicily 23-28. April 2014

2 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 2 Overview  The European XFEL Project  Wakefield Calculations for the XFEL  Cavity and Coupler Wakes  Collimators  High-Frequency Impedances  Resistive, Roughness, Oxide Layer Wakes  Wakefields in Undulator Section  Impedance Database  Start-to-End Simulations with Wakes  Impact of Wakes on FEL Performance  Challenges

3 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 3 The European XFEL Project

4 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 4 The European XFEL Project Linac Coherent Light Source (LCLS) Spring-8 Angstrom Compact Laser (SACLA) European XFEL LocationUSAJapanDeutschland Start of commissioning 200920112016 Accelerator technology normal conducting superconducting Number of light flashes per second 1206027 000 Minimum wavelength 0.15 nm0.1 nm0.05 nm Length of the facility 3000 m750 m3400 m

5 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 5 The European XFEL Project Gun 4 accelerator modules 12 accelerator modules main linac 3 rd harmonic RF SASE1 laser heater dogleg collimator BC2 BC1 BC0 bunch compressors σ s = 2 mm I peak = 50 A Q = 1 nC σ s = 1 mm I peak = 100 A E = 130 MeV σ s = 0.1 mm I peak = 1 kA E = 600 MeV σ s = 0.01-0.02 mm I peak = 5-10 kA E = 2400 MeV Layout

6 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 6 Cavity and Coupler Wakes 1 8 1 8 1 8 8 cavities + 9 belows =12m12m Cryomodule 1 Cryomodule 2 Cryomodule 3  Wakes for short bunches up to 50um have been studied  To reach the steady state solution 3 cryomodules are considered  For longitudinal case the wakes were studied earlier by A. Novokhatski et al *. The transverse results are calculated with ECHO **. ** Weiland T., Zagorodnov I, The Short-Range Transverse Wake Function for TESLA Accelerating Structure, DESY, TESLA-2003-19, 2003 * Novokhatski A, Timm M, Weiland T. Single Bunch Energy Spread in the TESLA Cryomodule, DESY, TESLA-1999-16, 1999 Wakefunctions of TESLA Cryomodule

7 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 7 Cavity and Coupler Wakes a – iris rtadius, g – cavity gap One-cell structure Periodic structure - fit parameters K.L.F.Bane, SLAC-PUB-9663, LCC-0116, 2003 Wakefunctions of TESLA Cryomodule

8 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 8 Cavity and Coupler Wakes Comparison of numerical (points) and analytical (lines) integral parameters for the third cryomodule Wakefunctions of TESLA Cryomodule

9 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 9 Cavity and Coupler Wakes Comparison of numerical (grays) and analytical (dashes) transverse wakes Transverse wake of TESLA Cryomodule

10 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 10 Cavity and Coupler Wakes Coupler Kick

11 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 11 Cavity and Coupler Wakes Coupler Kick

12 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 12 Cavity and Coupler Wakes Coupler Kick

13 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 13 Cavity and Coupler Wakes TESLA Report 2004-01, DESY, 2004 Transverse Deflecting Structure

14 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 14 Cavity and Coupler Wakes Transverse Deflecting Structure

15 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 15 Cavity and Coupler Wakes Transverse Deflecting Structure

16 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 16 Cavity and Coupler Wakes Transverse Deflecting Structure

17 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 17 Cavity and Coupler Wakes Transverse Deflecting Structure

18 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 18 Cavity and Coupler Wakes Third-Harmonic Section

19 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 19 Cavity and Coupler Wakes Third-Harmonic Section

20 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 20 Collimator Wakes The bunch moves very close to the aperture wall! Tapered Collimators

21 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 21 Collimator Wakes I.Zagorodnov et al, DESY, TESLA-2003-19, 2003 M.Dohlus et al., DESY, FEL Report 2010-04, 2010

22 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 22 Collimator Wakes Zagorodnov I., Bane K., Wakefield Calculations for 3D Collimators, in Proceedings of EPAC 2006 Conference, Edinburgh, Scotland, 2006 (SLAC-PUB-11938) Short/Long 3D Step Collimators Kick factor vs. collimator length. A round collimator (left), a square or rectangular collimator (  = 0.3 mm, right).

23 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 23 Collimator Wakes Zagorodnov I., Bane K., Wakefield Calculations for 3D Collimators, in Proceedings of EPAC 2006 Conference, Edinburgh, Scotland, 2006 (SLAC-PUB-11938) Short/Long 3D Step Collimators long short

24 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 24 Collimator Wakes Short/Long Round Collimators shortlong short

25 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 25 High-Frequency Impedances, Optical Approximation

26 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 26 High-Frequency Impedances Transverse Impedance of Laser Mirror of RF Gun k y (0,0), V/pC k y (d), V/pC/ m k y (q), V/pC/ m Analytical0.12413.112.1 Numerical0.12013.111.6 k y (0,0), V/pC k y (d), V/pC/ m k y (q), V/pC/ m Analytical0.121312 Numerical0.08247.5

27 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 27 High-Frequency Impedances Transverse Impedance of OTR Screens

28 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 28 High-Frequency Impedances Longitudinal Impedance of Round-to-Rectangular Transitions in Bunch Compressors

29 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 29 High-Frequency Impedances Impedances of Round Misaligned Pipe M. Dohlus et al, High Frequency Impedances in European XFEL, DESY 10-063, 2010

30 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 30 High-Frequency Impedances

31 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 31 Resistive, Roughness, Oxide Layer Wakes The effect of the oxide layer and the roughness can be taken into account through the inductive surface impedance M.Dohlus. TESLA 2001-26, 2001 A.Tsakanian et al, TESLA-FEL 2009-05 Round Resistive Pipe with Roughness and Oxide Layer

32 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 32 Resistive, Roughness, Oxide Layer Wakes Round vs. Elliptical pipe Loss, V/pC Spread, V/pC round237285 elliptical239274 Mathcad script for arbitrary shape with roughness and oxide layer (author M. Dohlus) http://www.desy.de/fel-beam/s2e/codes.html

33 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 33 Wakefields in Undulator

34 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 34 Wakefields in Undulator NElementfromto Effective LengthMaterialConduct. Relax. Time Oxid layer Rough ness mm 1/Omm/msecnm 1Eliptical pipe052885161Aluminium3,66E+077,10E-155300 2Pump51615266105Aluminium3,66E+087,10E-155300 3 Absorber/Round transition5266528822Copper5,80E+072,46E-145300 4Round pipe52886100652Copper5,80E+072,46E-145300 5Below5288531830BeCu 1742,78E+072,46E-145300 6BPM53735473100 Stainless Steel 3041,40E+062,40E-155300 7Below5513554330BeCu 1742,78E+072,46E-145300 8 Round/Eliptical transition6100 0 1 23 4 5678

35 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 35 Wakefields in Undulator Loss (Spread), V/pC step110 (43) taper 10mm74 (48) taper 20mm50 (43) step taper 10mm Absorber in 3D (2005)

36 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 36 Wakefields in Undulator Impedance of Eliptical-to-Round Transition with Absorber Dependence of the loss factor from the radius of the round pipe. The left graph presents the results without the absorber, the right graph presents the results with the absorber included. The black dots show the numerical results from CST Particle Studio.

37 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 37 Wakefields in Undulator Loss, V/pC Spread, V/pC Peak, V/pC pump1510-24 pillbox4016-57 Pillbox 2D/3D Pump

38 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 38 Wakefields in Undulator Energy Spread for Gaussian Bunch (25 μm)

39 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 39 Transitive Resistive and Geometrical Wakes in Undulator Wakefields in Undulator A.Tsakanian, PhD Thesis, 2010

40 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 40  There are hundreds of wakefield sources in XFEL beam line.  The bunch shape changes along the beam line.  Hence, a database with wake functions for all element is required.  The wake functions are not functions but distributions (generalized functions).  How to keep information about such functions?  We need a model. Impedance Database

41 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 41 singular part (cannot be tabulated directly) Wake function model regular part resistive inductive capacitive it describes singularities s -   Impedance Database

42 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 42 Pillbox Cavity Step-out transition Tapered collimator Impedance Database

43 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 43 Wake potential for arbitrary bunch shape derivative of the bunch shape Impedance Database

44 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 44 Impedance Database

45 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 45 Undulator wake for Q=1nC Total wake resistive wake bunch Impedance Database

46 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 46 Impedance Database Accelerator wakes. Q=1nC collimators cavities “warm” pipe

47 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 47 Impedance Database Longitudinal+Transverse Wakes 3D

48 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 48 Beam dynamics simulation (2010) ASTRA ( tracking with 3D space charge, DESY, K. Flötmann) W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003) W3 - ACC39 wake (TESLA Report 2004-01, DESY, 2004) TM - transverse matching to the design optics W3W3 W 1 TM 4W 1 TM 64W 1 12W 1 TM Full 3D simulation method (200 CPU, ~10 hours) CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg) Start-to-End Simulations with Wakes

49 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 49 Start-to-End Simulations with Wakes CSRtrack+ASTRA (Guangyao Feng) Elegant (Hyunchang Jin) 2013 G.Feng et al. FEL Report 2010-04, 2013

50 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 50 New Results and Comparison with Elegant Comparison with Elegant, Q = 1nC

51 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 51 New Results and Comparison with Elegant Comparison with Elegant, Q = 250 pC

52 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 52 total wake resistive wake bunch SASE for Nominal Bunch Parameters Mismatch and wake Q=1nC

53 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 53 Radiation Q=1 nC Averaged through 8000 slices +Wake+Taper +Wake SASE for Nominal Bunch Parameters

54 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 54 Mismatch and wake Q=250 pC Total wake resistive wake bunch SASE for Nominal Bunch Parameters

55 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 55 Radiation Q=250 pC Averaged through 2400 slices +Wake+Taper +Wake SASE for Nominal Bunch Parameters

56 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 56 Accelerator wakes. Q=1nC collimators cavities “warm” pipe Impact of Accelerator Wakes on SASE

57 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 57 Full wake Cavities wake Full wake Cavities wake current Impact of Accelerator Wakes on SASE Accelerator wakes. Q=1nC

58 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 58 full wake (full wake) x 4 (full wake) x 8 at z=85 m Beam matched in the peak current. Q=1nC current Impact of Accelerator Wakes on SASE

59 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 59 full wake (full wake) x 4 (full wake) x 8 Beam matched in the peak current. Q=1nC FWHM=0.14% FWHM=0.23% FWHM=0.6% Normalized spectrum at z=85 m Impact of Accelerator Wakes on SASE

60 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 60 Accelerator wakes. Q=250 pC. collimators cavities “warm” pipe Impact of Accelerator Wakes on SASE

61 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 61 Full wake Cavities wake Full wake Cavities wake Impact of Accelerator Wakes on SASE Accelerator wakes. Q=250 pC.

62 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 62 full wake (full wake) x 4 (full wake) x 8 Normalized spectrum at z=85 m FWHM=0.29% FWHM=0.30% FWHM=0.38% Impact of Accelerator Wakes on SASE Beam matched in the peak current. Q=250 pC

63 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 63 Summary Accelerator wake Bunch charge, nC 10.250.02 Energy in the radiation pulse at z=175 m, mJ x192.30.46 x482.30.44 x862.30.43 Spectrum width at z=85m, % x10.140.290.55 x40.230.300.58 x80.60.381.0 We have considered only the longitudinal wake in a quite coarse model (adding the missed part of the accelerator wake at the undulator entrance). The transverse wakes are neglected. Impact of Accelerator Wakes on SASE

64 Igor Zagorodnov| Collaboration Meeting at PAL| 2-6. August 2013 | Seite 64 Challenges  Chamber Wakefields in Bunch Compressors  Impact of All (Longitudinal+Transverse) Wakes on the Results of Start-to-End Simulations  Transverse Impedance Database  Impact of Transverse Wakes on FEL Performance


Download ppt "Wakefield Calculations and Impedance Database Challenges for the European XFEL Project at DESY Igor Zagorodnov ICFA mini-Workshop on “Electromagnetic wake."

Similar presentations


Ads by Google