Download presentation
Presentation is loading. Please wait.
Published byDaphne Winnett Modified over 9 years ago
2
Amand Faessler, München, 24. November 20051 Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted
3
Amand Faessler, München, 24. November 20052 Neutrinoless Double Beta Decay The Double Beta Decay: 0+0+ 0+0+ 0+0+ β-β- 1+1+ 2-2- β-β- e-e- e-e- E>2m e
4
Amand Faessler, München, 24. November 20053 2 νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn
5
Amand Faessler, München, 24. November 20054 O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ
6
Amand Faessler, München, 24. November 20055 GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:
7
Amand Faessler, München, 24. November 20056 P P ν ν nn e-e- e-e- L/R l/r
8
Amand Faessler, München, 24. November 20057 l/r P ν P n n light ν heavy N Neutrinos l/r L/R
9
Amand Faessler, München, 24. November 20058 Supersymmetry Bosons ↔ Fermions ----------------------------------------------------------------------- Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron
10
Amand Faessler, München, 24. November 20059 Theoretical Description: Simkovic, Rodin, Benes, Vogel, Bilenky, Salesh, Gutsche, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Stoica, Suhonen, Civitarese, Tomoda, Valle, Moya de Guerra, Sarriguren et al. 0+0+ 0+0+ 0+0+ 1+1+ 2-2- k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ Never in Tuebingen: Muto/Tokyo, Hirsch/Valencia
11
Amand Faessler, München, 24. November 200510 Neutrinoless Double Beta- Decay Probability
12
Amand Faessler, München, 24. November 200511 Effective Majorana Neutrino-Mass for the 0 Decay CP Tranformation from Mass to Flavor Eigenstates
13
Amand Faessler, München, 24. November 200512 Neutrino-Masses from the 0 ν and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:
14
Amand Faessler, München, 24. November 200513 ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta 12 = 32.6 degrees Solar + KamLand Theta 13 < 13 degrees Chooz Theta 23 = 45 degrees S-Kamiokande m 2 12 (solar 8 eV m 2 23 atmospheric eV
15
Amand Faessler, München, 24. November 200514 OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
16
Amand Faessler, München, 24. November 200515 BilenkyBilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/0402250 FaesslerSimkovic
17
Amand Faessler, München, 24. November 200516 (Bild) Bilenky, Faessler, Simkovic:, Phys.Rev. D70:033003(2004) : hep-ph/0402250 Bilenky FaesslerSimkovic
18
Amand Faessler, München, 24. November 200517 The best choice: Quasi-Particle- Quasi-Boson-Approx.: Particle Number non-conserv. (important near closed shells) Unharmonicities Proton-Neutron Pairing Pairing
19
Amand Faessler, München, 24. November 200518
20
Amand Faessler, München, 24. November 200519 Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] >9.5 10 21 >1.9 10 25 >1.4 10 22 >1.0 10 21 >5.5 10 22 >7.0 10 22 >8.6 10 22 >1.4 10 22 >5.8 10 22 >7.0 10 23 >1.7 10 21 Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M( <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.
21
Amand Faessler, München, 24. November 200520 Contribution of Different Multipoles to M(0 )
22
Amand Faessler, München, 24. November 200521 g(A)**4 = 1.25**4 = 2.44 fit to 2 RodinRodin, Faessler, Simkovic, Vogel, Mar 2005 nucl-th/0503063FaesslerSimkovicVogel
23
Amand Faessler, München, 24. November 200522 Overlap of Wave Functions of the not involved core of the initial and final nuclei. Benes, Faessler, Simkovic Benesch, Faessler, Simkovic Preliminary (July 2005) Ge76
24
Amand Faessler, München, 24. November 200523 Overlap of the core added to the 0 decay and new 2 -decay data (NEMO).
25
Amand Faessler, München, 24. November 200524 R-QRPA-0 -Decay Nuclear Matrix Elements with Lipkin-Nogami and and Overlap of the Core. No experimental error included Closed Shells involved Benesch, Faessler, Simkovic (July 2005) Preliminary 20; 50; 82
26
Amand Faessler, München, 24. November 200525 Renormalized QRPA with Lipkin-Nogami including the experimental error of the 2 decay
27
Amand Faessler, München, 24. November 200526 Relation of M(0 ) on M(2 ) independent on Size of Basis ( 21 and 9 or 13 levels) Ratio M(0 )/M(2 ) with g(pp) fixed to M(2 ) independent of basis size
28
Amand Faessler, München, 24. November 200527 2.76 (QRPA) 2.34 (RQRPA) Muto corrected
29
Amand Faessler, München, 24. November 200528 M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus their(QRPA, 1.254) our(QRPA, 1.25) 76Ge 3.33 2.68(0.12) 100Mo 2.97 1.30(0.10) 130Te 3.49 1.56(0.47) 136Xe 4.64 0.90(0.20) g(pp) fitted differently Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? Short-range Brueckner Correlations not included. But finite size effects included. We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)!
30
Amand Faessler, München, 24. November 200529 Neutrinoless Double Beta Decay The Double Beta Decay: 0+0+ 0+0+ 0+0+ β-β- 1+1+ 2-2- β-β- e-e- e-e- E>2m e x xxx Gamov-Teller single beta decay in the second leg fitted with g(pp) by Suhonen et al.. Underestimates the first leg. We fit the full 2 decay by adjusting g(pp).
31
Amand Faessler, München, 24. November 200530 Fit of g(pp) to the single beta (2. leg) and the 2 double beta decay (small and large basis). Fit to 2 Fit to 1+ to 0+
32
Amand Faessler, München, 24. November 200531
33
Amand Faessler, München, 24. November 200532 Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations
34
Amand Faessler, München, 24. November 200533 Uncorrelated and Correlated Relative N-N-Wavefunction in the N-N-Potential Short Range Correlations
35
Amand Faessler, München, 24. November 200534 Jastrow-Function multiplying the relative N-N wavefunction (Parameters from Miller and Spencer, Ann. Phys 1976)
36
Amand Faessler, München, 24. November 200535 Influence of Short Range Correlations (Parameters from Miller and Spencer, Ann. Phys 1976)
37
Amand Faessler, München, 24. November 200536 Contribution of Different Multipoles to the zero Neutrino Matrixelements in QRPA s.r.c. = short range correlations h.o.t. = higher order currents Different Multipoles a) 76 Ge small model space ( 9 levels) b) 76 Ge large model space (21 levels) C) 100 Mo small model space ( 13 levels) d) 100 Mo large model space ( 21 levels)
38
Amand Faessler, München, 24. November 200537 Comparison of 2 Half Lives with Shell model Results from Strassburg
39
Amand Faessler, München, 24. November 200538 0 Decay Matrix Elements in R-QRPA and the Strassburg Shell Model
40
Amand Faessler, München, 24. November 200539 Contribution of GT 1+ States and the Sum of all other States to M(0 )
41
Amand Faessler, München, 24. November 200540 Multipole Decomposition of M(0 ) in QRPA
42
Amand Faessler, München, 24. November 200541
43
Amand Faessler, München, 24. November 200542
44
Amand Faessler, München, 24. November 200543 M0ν (R-QRPA; 1.25) S. Stoica, H.V. Klapdor- Kleingrothaus, NPA 694 (2001) 269 A similar procedure of fixing g(pp) to the two neutrino decay in one basis (?). Higher order terms of nucleon current not considered Nucleus l.m.s s.m.s our 76Ge 1.87 (l=12) 3.74 (s=9) 2.40(.12) 100Mo 3.40 4.36 1.20(.15) 130Te 3.00 4.55 1.46(.46) 136Xe 1.02 1.57 0.85(.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA!
45
Amand Faessler, München, 24. November 200544 Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
46
Amand Faessler, München, 24. November 200545 Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
47
Amand Faessler, München, 24. November 200546 Neutrinoless Double Beta Decay Matrix Elements EVZ-88 = Engel, Vogel, Zirnbauer; MBK-89 = Muto. Bender, Klapdor; T-91 Tomoda; SKF-91 = Suhonen, Khadkikar, Faessler; PSVF-96 = Pantis, Simkovic, Vergados, Faessler; AS-98 = Aunola, Suhonen; SPVF-99 = Simkovic, Pantis, Vergados, Faessler; SK-01 = Stoica, Klapdor; CS-03= Civitarese, Suhonen.
48
Amand Faessler, München, 24. November 200547 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] DAMA ( 136 Xe) 1.2 X 10 24 2.3 MAJORANA ( 76 Ge) 3 X 10 27 0.044 EXO 10t ( 136 Xe) 4 X 10 28 0.012 GEM ( 76 Ge)7 X 10 27 0.028 GERDA II ( 76 Ge) 2 X 10 26 0.11 CANDLES ( 48 Ca) 1 X 10 26 0.2 MOON ( 100 Mo) 1 X 10 27 0.058
49
Amand Faessler, München, 24. November 200548 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] XMASS ( 136 Xe) 3 X 10 26 0.10 CUORE ( 130 Te) 2 X 10 26 0.10 COBRA ( 116 Cd) 1 X 10 24 1 DCBA ( 100 Mo) 2 X 10 26 0.07 DCBA ( 82 Se)3 X 10 26 0.04 CAMEO ( 116 Cd) 1 X 10 27 0.02 DCBA ( 150 Nd) 1 X 10 26 0.02
50
Amand Faessler, München, 24. November 200549 Neutrino-Masses from the 0 ν and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:
51
Amand Faessler, München, 24. November 200550 Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)
52
Amand Faessler, München, 24. November 200551 Reactor Neutrinos (Chooz): CP
53
Amand Faessler, München, 24. November 200552 ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande
54
Amand Faessler, München, 24. November 200553 OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
55
Amand Faessler, München, 24. November 200554 (Bild)
56
Amand Faessler, München, 24. November 200555 Summary: Accuracy of Neutrino Masses from 0 Fit the g(pp) by in front of the particle- particle NN matrixelement include exp. Error of . Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2 )) Core overlap reduction by ~0.90 (preliminary)
57
Amand Faessler, München, 24. November 200556 Summary: Results from Klapdor et al. from Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV]. ( Ge Exp. Klapdor) 0.47 [eV] [GeV] > 5600 [GeV] SUSY+R-Parity: ‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk, Triton Decay: m( 2.2 [eV] Astro Physics (SDSS): Sum{ m( ) } < ~0.5 to 2 [eV] Do not take democratic averaged matrix elements !!!
58
Amand Faessler, München, 24. November 200557 Open Problems: 1. Overlapping but slightly different Hilbert spaces in intermediate Nucleus for QRPA from intial and from final nucleus. 2. Pairing does not conserve Nucleon number. Problem at closed shells. Particle projection. Lipkin-Nogami, 3. Deformed nuclei? (e.g.: 150 Nd ) THE END β-β- 0+0+ 0+0+ 2-2- 1+1+ 0+0+ pn -1 np -1
59
Amand Faessler, München, 24. November 200558 Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry → Majorana- Neutrino = Antineutrinos <m( eV; ‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] nn nn P P PP d d d d u u u u u u
60
Amand Faessler, München, 24. November 200559 3. Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = 0.002 – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = 0.009 - 0.045 [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END
61
Amand Faessler, München, 24. November 200560 ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:
62
Amand Faessler, München, 24. November 200561 Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino
63
Amand Faessler, München, 24. November 200562 Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.
64
Amand Faessler, München, 24. November 200563 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible
65
Amand Faessler, München, 24. November 200564 Super-K:
66
Amand Faessler, München, 24. November 200565 Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:
67
Amand Faessler, München, 24. November 200566 How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families
68
Amand Faessler, München, 24. November 200567 g PP fixed to 2 νββ; M(0 ) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values
69
Amand Faessler, München, 24. November 200568 Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ(νe)Φ(νe)=1.76*10 6 (CC) Φ(νμ+ντ)Φ(νμ+ντ)=3.41*10 6 (CC+ES) Φ(νe+νμ+ντ)Φ(νe+νμ+ντ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6
70
Amand Faessler, München, 24. November 200569
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.