Download presentation
Presentation is loading. Please wait.
Published byAliyah Turner Modified over 10 years ago
1
A primer on DFDI, the MARVELS optical implementation, and pipeline flow MARVELS Science Review Brian Lee, June 21, 2011
2
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Physical path difference: B2-B1 (DFDI Refs.: Erskine & Ge (2000), Ge et al. 2001, Erskine 2003, Ge 2002, Mosser et al. 2003, Mahadevan et al. 2008, van Eyken et al. 2010)
3
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Physical path difference: B2-B1 = N*lambda -> constructive interference (DFDI Refs.: Erskine & Ge (2000), Ge et al. 2001, Erskine 2003, Ge 2002, Mosser et al. 2003, Mahadevan et al. 2008, van Eyken et al. 2010)
4
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Physical path difference: B2-B1 = N*lambda + 0.5*lambda -> destructive interference (0.5*lambda of added delay) (DFDI Refs.: Erskine & Ge (2000), Ge et al. 2001, Erskine 2003, Ge 2002, Mosser et al. 2003, Mahadevan et al. 2008, van Eyken et al. 2010)
5
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Tilt mirror 2 over, so path length is a function of height Y ->Intensity is now a function of height Y = fringes Y Y
6
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Now consider slightly longer wavelength of input light Y Y Old lambda New lambda
7
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics So multiple wavelengths look like this: Y Y lambda
8
MARVELS basic physics Zooming out in lambda, you’d see more strongly the dependence of periodicity of interference on wavelength. We call that the “interferometer fan”:
9
MARVELS basic physics m=1 m=2 m=3 m=4 Orders m are evenly spaced in y…
10
MARVELS basic physics (The MARVELS instrument can only collect a small cutout from the fan, with m~13000 and 5000A~<lambda~<5700A. We typically refer to the small cutout as, “comb.”) m=1 m=2 m=3 m=4 this way to m=13000…
11
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics (Have to add a low-resolution spectrograph so the fringes aren't all on top of each other) Y Spectrograph Y lambda
12
B1 B2 Input light Beamsplitter Mirror 1 Mirror 2 MARVELS basic physics Gradient in tilt of fringes across lambda is present, but fairly small. Y Spectrograph Y lambda
13
MARVELS basic physics Y lambda This was for a continuum light source...
14
MARVELS basic physics Y lambda Now multiply in a stellar source with absorption lines instead.
15
MARVELS basic physics Y lambda Now multiply in a stellar source with absorption lines instead. Note intersections.
16
MARVELS basic physics Y lambda Small x shift (e.g., from RV) of stellar lines gives larger y shift in intersections (amplification higher if slope is steeper)! Y shift X shift
17
MARVELS basic physics Y lambda Actual intensities follow a sinusoidal model, in theory. Y Inten. Continuum level Line depth
18
MARVELS basic physics Y lambda Y Inten. Continuum level Line depth Okay, now what messes this up?
19
Slanted spectral lines…
20
…tilted trace apertures…
21
…illumination profile of the slit…
22
…higher order distortions (time-variable?)…
23
…PSF (not necessarily constant across CCD)…
24
…integrated onto the CCD. Can you still spot the intersections?
25
Real data… Raw data (MARVELS): Above fringing spectrum, fully preprocessed:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.